• 线性回归代码实现(matlab)


    1 代价函数实现(cost function)

    function J = computeCost(X, y, theta)
    %COMPUTECOST Compute cost for linear regression
    %   J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
    %   parameter for linear regression to fit the data points in X and y
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0; 
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta
    %               You should set J to the cost.
    
    predictions = X * theta;
    sqrErrors = (predictions-y) .^ 2;
    
    J = 1/(2*m) * sum(sqrErrors);
    
    
    
    % =========================================================================
    
    end
    

      1.1 详细解释

    转化成了向量(矩阵)形式,如果用其他的语言,用循环应该可以实现

    predictions = X * theta;        % 这里的大X是矩阵
    

      

    sqrErrors = (predictions-y) .^ 2;
    

      

    2 梯度下降

    function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
    %GRADIENTDESCENT Performs gradient descent to learn theta
    %   theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by 
    %   taking num_iters gradient steps with learning rate alpha
    
    % Initialize some useful values
    m = length(y); % number of training examples
    J_history = zeros(num_iters, 1);
    
    for iter = 1:num_iters
    
        % ====================== YOUR CODE HERE ======================
        % Instructions: Perform a single gradient step on the parameter vector
        %               theta. 
        %
        % Hint: While debugging, it can be useful to print out the values
        %       of the cost function (computeCost) and gradient here.
        %
        theta_temp = theta;
        for j = 1:size(X, 2)
            theta_temp(j) = theta(j)-alpha*(1/m)*(X*theta - y)' * X(:, j);
        end
        theta = theta_temp;
    
    
    
    
    
        % ============================================================
    
        % Save the cost J in every iteration    
        J_history(iter) = computeCost(X, y, theta);
    
    end
    
    end
    

      2.1 解释

    J_history = zeros(num_iters, 1);

    theta_temp = theta;  
    

      把theta存起来。保证同时更新

    for j = 1:size(X, 2)
            theta_temp(j) = theta(j)-alpha*(1/m)*(X*theta - y)' * X(:, j);
        end
    

      更新theta    

    (X*theta - y)' 是转置

    (X*theta - y)' * X(:, j);
    

      这步是求和,相当于sum

      J_history(iter) = computeCost(X, y, theta);

    记录代价函数

    因为随着迭代次数的增加,代价函数收敛。theta也就确定了。

    代价函数的是降低,同时theta也在变化

    到后面代价函数的值已经不变化了。到收敛了

  • 相关阅读:
    IE浏览器下常见的CSS兼容问题
    Android studio 使用问题汇总
    IOS中的属性列表----Property List
    自定义组件-BreadcrumbTreeView 的使用
    IOS开发之数据sqlite使用
    深入分析动态管理Fragment
    IOS开发中多线程的使用
    Java中导入、导出Excel
    IOS数据持久化之归档NSKeyedArchiver
    Bugfree3.0.4 Linux环境安装指南
  • 原文地址:https://www.cnblogs.com/liu-wang/p/9459918.html
Copyright © 2020-2023  润新知