• 【AI】Pytorch_LearningRate


    From: https://liudongdong1.github.io/

    a. 有序调整:等间隔调整(Step),按需调整学习率(MultiStep),指数衰减调整(Exponential)和 余弦退火CosineAnnealing。
    b. 自适应调整:自适应调整学习率 ReduceLROnPlateau。
    c. 自定义调整:自定义调整学习率 LambdaLR。

    #得到当前学习率
    lr = next(iter(optimizer.param_groups))['lr'] 
    #multiple learning rates for different layers.
    all_lr = []
    for param_group in optimizer.param_groups:
        all_lr.append(param_group['lr'])
        
     #学习率衰减
    #Reduce learning rate when validation accuarcy plateau.
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True)
    for t in range(0, 80):
        train(...); val(...)
        scheduler.step(val_acc)
    #Cosine annealing learning rate.    
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80)
    #Reduce learning rate by 10 at given epochs.
    scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1)
    for t in range(0, 80):
        scheduler.step()    
        train(...); val(...)
    #Learning rate warmup by 10 epochs.
    scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10)
    for t in range(0, 10):
        scheduler.step()
        train(...); val(...)
    

    1. 针对不同的层

    model = torchvision.models.resnet101(pretrained=True)
    large_lr_layers = list(map(id,model.fc.parameters()))
    small_lr_layers = filter(lambda p:id(p) not in large_lr_layers,model.parameters())
    optimizer = torch.optim.SGD([
                {"params":large_lr_layers},
                {"params":small_lr_layers,"lr":1e-4}
                ],lr = 1e-2,momenum=0.9)
    

    2. 等间隔调整学习率 StepLR

    torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)
    
    • step_size(int)- 学习率下降间隔数,若为 30,则会在 30、 60、 90…个 step 时,将学习率调整为 lr*gamma
    • gamma(float)- 学习率调整倍数,默认为 0.1 倍,即下降 10 倍。
    • last_epoch(int)- 上一个 epoch 数,这个变量用来指示学习率是否需要调整。当last_epoch 符合设定的间隔时,就会对学习率进行调整。当为-1 时,学习率设置为初始值。

    调整倍数为 gamma 倍,调整间隔为 step_size。间隔单位是step。需要注意的是, step 通常是指 epoch,不要弄成 iteration 了。

    3. 按需调整学习率 MultiStepLR

    torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)
    
    • milestones(list)- 一个 list,每一个元素代表何时调整学习率 list 元素必须是递增的。如 milestones=[30,80,120]
    • gamma(float)- 学习率调整倍数,默认为 0.1 倍,即下降 10 倍。

    按设定的间隔调整学习率。这个方法适合后期调试使用,观察 loss 曲线,为每个实验定制学习率调整时机。

    4. 指数衰减调整学习率 ExponentialLR

    torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch=-1)
    

    gamma- 学习率调整倍数的底,指数为 epoch,即 gamma**epoch

    5. 余弦退火调整学习率 CosineAnnealingLR

    torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)
    
    • T_max(int)- 一次学习率周期的迭代次数,即 T_max 个 epoch 之后重新设置学习率
    • eta_min(float)- 最小学习率,即在一个周期中,学习率最小会下降到 eta_min,默认值为 0。

    以余弦函数为周期,并在每个周期最大值时重新设置学习率。以初始学习率为最大学习率,以 2 ∗ T m a x 2*Tmax2∗Tmax 为周期,在一个周期内先下降,后上升。

    epochs = 60
    optimizer = optim.SGD(model.parameters(),lr = config.lr,momentum=0.9,weight_decay=1e-4) 
    scheduler = lr_scheduler.CosineAnnealingLR(optimizer,T_max = (epochs // 9) + 1)
    for epoch in range(epochs):
        scheduler.step(epoch)
    

    6. 自适应调整学习率 ReduceLROnPlateau

    torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)
    
    • mode(str)- 模式选择,有 min 和 max 两种模式, min 表示当指标不再降低(如监测loss) max 表示当指标不再升高(如监测 accuracy)
    • factor(float)- 学习率调整倍数(等同于其它方法的 gamma),即学习率更新为 lr = lr * factor
    • patience(int)- 忍受该指标多少个 step 不变化,当忍无可忍时,调整学习率
    • verbose(bool)- 是否打印学习率信息, print(‘Epoch {:5d}: reducing learning rate of group {} to {:.4e}.’.format(epoch, i, new_lr))
    • threshold_mode(str)- 选择判断指标是否达最优的模式,有两种模式, rel 和 abs。
      当 threshold_mode == rel,并且 mode == max 时, dynamic_threshold = best * ( 1 +threshold );
      当 threshold_mode == rel,并且 mode == min 时, dynamic_threshold = best * ( 1 -threshold );
      当 threshold_mode == abs,并且 mode== max 时, dynamic_threshold = best + threshold ;
      当 threshold_mode == rel,并且 mode == max 时, dynamic_threshold = best - threshold;
    • threshold(float)- 配合 threshold_mode 使用。
    • cooldown(int)- “冷却时间“,当调整学习率之后,让学习率调整策略冷静一下,让模型再训练一段时间,再重启监测模式。
    • min_lr(float or list)- 学习率下限,可为 float,或者 list,当有多个参数组时,可用 list 进行设置。
    • eps(float)- 学习率衰减的最小值,当学习率变化小于 eps 时,则不调整学习率。
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)scheduler = ReduceLROnPlateau(optimizer, 'max',verbose=1,patience=3)for epoch in range(10):    train(...)    val_acc = validate(...)    # 降低学习率需要在给出 val_acc 之后    scheduler.step(val_acc)
    

    7. 自定义调整学习率 LambdaLR

    image-20210531084712294

    torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)
    
    • lr_lambda(function or list)- 一个计算学习率调整倍数的函数,输入通常为 step,当有多个参数组时,设为 list。

    8. 手动设置

    def adjust_learning_rate(optimizer, lr):    for param_group in optimizer.param_groups:        param_group['lr'] = lrfor epoch in range(60):            lr = 30e-5    if epoch > 25:        lr = 15e-5    if epoch > 30:        lr = 7.5e-5    if epoch > 35:        lr = 3e-5    if epoch > 40:        lr = 1e-5    adjust_learning_rate(optimizer, lr)
    
  • 相关阅读:
    Postgresql
    Partitioning with PostgreSQL v11 (转发)
    Partitioning with PostgreSQL v11 (转发)
    What is Data Partitioning?(转发)(未完待续)
    How to use table partitioning to scale PostgreSQL(转发)
    PostgreSQL 创建分区表(转发)
    json vs jsonb
    性能不佳的多线程应用程序的常见模式(microsoft)
    提高.net程序性能和稳定性-CLR Profile(转发)
    检查c#代码内存泄露工具-CLR Profiler工具使用(转发)
  • 原文地址:https://www.cnblogs.com/liu-dongdong/p/15189652.html
Copyright © 2020-2023  润新知