• k-近邻算法(kNN)


    1.算法工作原理

      存在一个训练样本集,我们知道样本集中的每一个数据与所属分类的对应关系,输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应特征进行比较,然后算法提取样本集中特征最相似的数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处。通常k是不大于20的整数。

      比如匹配是爱情片,还是动作片,将已知电影和未知电影比较,算出距离

      

      假如k = 3,前三部又是爱情片,所以我们可判定此电影为爱情片。

    2.算法流程

      1.准备:使用python导入数据。

        创建kNN.py模块

        这里我们先用自己输入的数据测试。

    from numpy import *  #科学计算包
    import operator #运算符模块
    
    def createDataSet():
        group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) #创建数据集
        labels = ['A','A','B','B']      #标签
        return group,labels
    
    
    def classify(inX,dataSet,labels,k):
        dataSetSize = dataSet.shape[0]  #求数组的行数
        diffarray = tile(inX, (dataSetSize, 1))-dataSet   #tile使inx变为和dataSet相同行数的数组
        squarediffarray = diffarray**2  # x^2 , y^2
        sqDistances = squarediffarray.sum(axis=1) #对每一行向量求和
        distances = sqDistances**2 #对每个和开根号
        sortedDistIndexes = distances.argsort()  #将所有值从小到大排序,取原先的索引
        mp = {}
        for i in range(k):
            templabel = labels[sortedDistIndexes[i]]
            mp[templabel] = mp.get(templabel,0)+1 #dict.get(key,default=None),不存在返回0
        sortedmp = sorted(mp.items(),key=operator.itemgetter(1),reverse=True) #[('D', 312), ('I', 100), ('C', 4), ('B', 3), ('A', 1)]
        #将出现次数较多的情况返回
        return sortedmp[0][0]
    
    def main():
        group,labels = createDataSet()
        var = classify([0.8,1.0],group ,labels , 3)
        print(var)
    main()
    A

    首先讨论的数组和矩阵的区别:

    #数组和矩阵的区别
    from numpy import *
    var = array([[1,2],[3,4]])
    matr = mat(var)
    #print(type(var))
    print(var**2)
    print(matr**2)
    print(var.shape[0])
    print(matr.shape[0])
    [[ 1  4]
     [ 9 16]]
    [[ 7 10]
     [15 22]]
    2
    2

    数组的平方是对数组中的每个元素平方,矩阵的平方是两个矩阵相乘。

    shape[0]可以计算数组和矩阵的行数。

    关于tile,戳这

    kNN中的应该还是数组

    from numpy import *  #科学计算包
    import operator #运算符模块
    b = [1,3,5]
    var = tile(b, (2, 3))
    print(type(var))
    <class 'numpy.ndarray'>

    关于sum(axis=1)戳这

    关于argsort,戳这

    python 3.6下,将iteritems换成了items.

    sort排序

    from numpy import *  #科学计算包
    import operator #运算符模块
    mp = {}
    mp['A'] = mp.get('A',1)
    mp['B'] = mp.get('B',3)
    mp['C'] = mp.get('C',4)
    mp['D'] = mp.get('D',312)
    mp['I'] = mp.get('I',100)
    so = sorted(mp.items(),key=operator.itemgetter(1),reverse=False)
    print(so)
    [('A', 1), ('B', 3), ('C', 4), ('I', 100), ('D', 312)]

    items()将dict分解为元组列表.

    示例:使用kNN算法改进约会网站

    使用Matplotlit创建散点图

    此时代码

    #该函数的输入为文本名字符串,输出位训练样本矩阵和类标记向量
    def filearray(filename):
        fr = open(filename)
        #a = array([1,2,3,4,5])
        arrayOLines = fr.readlines()
        #print(arrayOLines)
        #numberOfLines = len(a)
        numberOfLines = len(arrayOLines)
        #print(numberOfLines)
        #print(type(zeros((numberOfLines,3))))
        returnarray = zeros((numberOfLines,3))
        labels = []
        index = 0
        for line in arrayOLines:
            line = line.strip() #去掉回车
            #print(line)
            listFromLine = line.split('	')
            #print(listFromLine)  #变成列表
            returnarray[index,:] = listFromLine[0:3]
            labels.append(int((listFromLine[-1]))) #应用数据错误
            index += 1
        return returnarray,labels
    def main():
        # group,labels = createDataSet()
        # var = classify([0.8,1.0],group ,labels , 3)
        # print(var)
        #datingDataArray,datinglabels = filearray('d3.txt')
        datingDataArray,datinglabels = filearray('datingTestSet2.txt')
        fig = plt.figure()
        ax = fig.add_subplot(111)
        ax.scatter(datingDataArray[:,1],datingDataArray[:,2]) #第1列和第2列
        plt.show()
        #print(datingDataArray)
        #print(datinglabels)
    main()

    对应散点图

    绘制不同色彩,三类人

    ax.scatter(datingDataArray[:,1],datingDataArray[:,2],
        15.0*array(datinglabels),15.0*array(datinglabels)) #第1列和第2列

    对后面还15.0乘还不太理解

    使用第一列和第二列更容易得出结论。

     

    #数值归一化
    #(oldValue - minVal)/(maxVal-minVal)
    def autoNorm(dataSet):
        minVals = dataSet.min(0)  #获取每一列的最小值和最大值
        maxVals = dataSet.max(0)
        # print(minVals)
        # print(maxVals)
        ranges = maxVals-minVals
        #print(shape(dataSet)) (9, 3)
        normDataSet = zeros(shape(dataSet)) #shape()返回矩阵规模
        m = dataSet.shape[0]
        normDataSet = dataSet - tile(minVals, (m, 1))
        normDataSet = normDataSet/tile(ranges, (m, 1))
        #print(normDataSet)
        return normDataSet,ranges,minVals
    #计算错误率
    def datingCalcError():
        Radio = 0.1
        datingDataArray,datinglabels = filearray('datingTestSet2.txt')
        normArray,ranges,minVals = autoNorm(datingDataArray)
        m = normArray.shape[0]
        numOfTestData = int(m*Radio) #10%
        errorNumber = 0.0  #浮点数
        for i in range(numOfTestData): #90%
            classifierResult = classify(normArray[i,:],normArray[numOfTestData:m,:],
                datinglabels[numOfTestData:m],3)
            print("the test result:%d, the real result:%d"%(classifierResult,datinglabels[i]))
            if(classifierResult!=datinglabels[i]): errorNumber += 1.0
        print("the error rate is %f"%(errorNumber/(float(numOfTestData))))
    # main()
    datingCalcError()

    约会网站预测

    from numpy import *  #科学计算包
    import operator #运算符模块
    import matplotlib
    import matplotlib.pyplot as plt
    def createDataSet():
        group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) #创建数据集
        labels = ['A','A','B','B']      #标签
        return group,labels
    
    
    def classify(inX,dataSet,labels,k):
        dataSetSize = dataSet.shape[0]  #求数组的行数
        diffarray = tile(inX, (dataSetSize, 1))-dataSet   #tile使inx变为和dataSet相同行数的数组
        squarediffarray = diffarray**2  # x^2 , y^2
        sqDistances = squarediffarray.sum(axis=1) #对每一行向量求和
        distances = sqDistances**2 #对每个和开根号
        sortedDistIndexes = distances.argsort()  #将所有值从小到大排序,取原先的索引
        mp = {}
        for i in range(k):
            templabel = labels[sortedDistIndexes[i]]
            mp[templabel] = mp.get(templabel,0)+1 #dict.get(key,default=None),不存在返回0
        sortedmp = sorted(mp.items(),key=operator.itemgetter(1),reverse=True) #[('D', 312), ('I', 100), ('C', 4), ('B', 3), ('A', 1)]
        #将出现次数较多的情况返回
        return sortedmp[0][0]
    #该函数的输入为文本名字符串,输出位训练样本矩阵和类标记向量
    def filearray(filename):
        fr = open(filename)
        #a = array([1,2,3,4,5])
        arrayOLines = fr.readlines()
        #print(arrayOLines)
        #numberOfLines = len(a)
        numberOfLines = len(arrayOLines)
        #print(numberOfLines)
        #print(type(zeros((numberOfLines,3))))
        returnarray = zeros((numberOfLines,3))
        labels = []
        index = 0
        for line in arrayOLines:
            line = line.strip() #去掉回车
            #print(line)
            listFromLine = line.split('	')
            #print(listFromLine)  #变成列表
            returnarray[index,:] = listFromLine[0:3]
            labels.append(int((listFromLine[-1]))) #应用数据错误
            index += 1
        return returnarray,labels
    def main():
        # group,labels = createDataSet()
        # var = classify([0.8,1.0],group ,labels , 3)
        # print(var)
        datingDataArray,datinglabels = filearray('d3.txt')
        #datingDataArray,datinglabels = filearray('datingTestSet2.txt')
        # fig = plt.figure()
        # ax = fig.add_subplot(111)
        # ax.scatter(datingDataArray[:,0],datingDataArray[:,1
        #     ],
        # 15.0*array(datinglabels),15.0*array(datinglabels)) #第1列和第2列
        # plt.show()
        #print(datingDataArray)
        #print(datinglabels)
        autoNorm(datingDataArray)
    #数值归一化
    #(oldValue - minVal)/(maxVal-minVal)
    def autoNorm(dataSet):
        minVals = dataSet.min(0)  #获取每一列的最小值和最大值
        maxVals = dataSet.max(0)
        # print(minVals)
        # print(maxVals)
        ranges = maxVals-minVals
        #print(shape(dataSet)) (9, 3)
        normDataSet = zeros(shape(dataSet)) #shape()返回矩阵规模
        m = dataSet.shape[0]
        normDataSet = dataSet - tile(minVals, (m, 1))
        normDataSet = normDataSet/tile(ranges, (m, 1))
        #print(normDataSet)
        return normDataSet,ranges,minVals
    #计算错误率
    def datingCalcError():
        Radio = 0.1
        datingDataArray,datinglabels = filearray('datingTestSet2.txt')
        normArray,ranges,minVals = autoNorm(datingDataArray)
        m = normArray.shape[0]
        numOfTestData = int(m*Radio) #10%
        errorNumber = 0.0  #浮点数
        for i in range(numOfTestData): #90%
            classifierResult = classify(normArray[i,:],normArray[numOfTestData:m,:],
                datinglabels[numOfTestData:m],3)
            print("the test result:%d, the real result:%d"%(classifierResult,datinglabels[i]))
            if(classifierResult!=datinglabels[i]): errorNumber += 1.0
        print("the error rate is %f"%(errorNumber/(float(numOfTestData))))
    #约会网站测试函数
    def classifyPerson():
        resultList = ['not at all','in small doses','in large doses']
        ffMiles = float(input('flier miles'))
        percentTats = float(input('playing game')) #不再有raw_input函数
        iceCream = float(input('ice cream'))
        datingDataArray,datinglabels = filearray('datingTestSet2.txt')
        normArray,ranges,minVals = autoNorm(datingDataArray)
        inArr = array([ffMiles,percentTats,iceCream])
        #print(inArr)
        classifierResult = classify(((inArr - minVals)/ranges),normArray, datinglabels, 3)
        print(resultList[classifierResult-1])
    # main()
    classifyPerson()
    Code

    使用kNN算法识别手写数字

    from numpy import *  #科学计算包
    import operator #运算符模块
    import matplotlib
    import matplotlib.pyplot as plt
    from os import listdir #返回一个目录下文件名的列表
    def createDataSet():
        group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) #创建数据集
        labels = ['A','A','B','B']      #标签
        return group,labels
    
    
    def classify(inX,dataSet,labels,k):
        dataSetSize = dataSet.shape[0]  #求数组的行数
        diffarray = tile(inX, (dataSetSize, 1))-dataSet   #tile使inx变为和dataSet相同行数的数组
        squarediffarray = diffarray**2  # x^2 , y^2
        sqDistances = squarediffarray.sum(axis=1) #对每一行向量求和
        distances = sqDistances**2 #对每个和开根号
        sortedDistIndexes = distances.argsort()  #将所有值从小到大排序,取原先的索引
        mp = {}
        #print(sortedDistIndexes[0:1024])
        for i in range(k):
            templabel = labels[sortedDistIndexes[i]]
            mp[templabel] = mp.get(templabel,0)+1 #dict.get(key,default=None),不存在返回0
        sortedmp = sorted(mp.items(),key=operator.itemgetter(1),reverse=True) #[('D', 312), ('I', 100), ('C', 4), ('B', 3), ('A', 1)]
        #将出现次数较多的情况返回
        return sortedmp[0][0]
    #该函数的输入为文本名字符串,输出位训练样本矩阵和类标记向量
    def filearray(filename):
        fr = open(filename)
        #a = array([1,2,3,4,5])
        arrayOLines = fr.readlines()
        #print(arrayOLines)
        #numberOfLines = len(a)
        numberOfLines = len(arrayOLines)
        #print(numberOfLines)
        #print(type(zeros((numberOfLines,3))))
        returnarray = zeros((numberOfLines,3))
        labels = []
        index = 0
        for line in arrayOLines:
            line = line.strip() #去掉回车
            #print(line)
            listFromLine = line.split('	')
            #print(listFromLine)  #变成列表
            returnarray[index,:] = listFromLine[0:3]
            labels.append(int((listFromLine[-1]))) #应用数据错误
            index += 1
        return returnarray,labels
    def main():
        # group,labels = createDataSet()
        # var = classify([0.8,1.0],group ,labels , 3)
        # print(var)
        datingDataArray,datinglabels = filearray('d3.txt')
        #datingDataArray,datinglabels = filearray('datingTestSet2.txt')
        # fig = plt.figure()
        # ax = fig.add_subplot(111)
        # ax.scatter(datingDataArray[:,0],datingDataArray[:,1
        #     ],
        # 15.0*array(datinglabels),15.0*array(datinglabels)) #第1列和第2列
        # plt.show()
        #print(datingDataArray)
        #print(datinglabels)
        autoNorm(datingDataArray)
    #数值归一化
    #(oldValue - minVal)/(maxVal-minVal)
    def autoNorm(dataSet):
        minVals = dataSet.min(0)  #获取每一列的最小值和最大值
        maxVals = dataSet.max(0)
        # print(minVals)
        # print(maxVals)
        ranges = maxVals-minVals
        #print(shape(dataSet)) (9, 3)
        normDataSet = zeros(shape(dataSet)) #shape()返回矩阵规模
        m = dataSet.shape[0]
        normDataSet = dataSet - tile(minVals, (m, 1))
        normDataSet = normDataSet/tile(ranges, (m, 1))
        #print(normDataSet)
        return normDataSet,ranges,minVals
    #计算错误率
    def datingCalcError():
        Radio = 0.1
        datingDataArray,datinglabels = filearray('datingTestSet2.txt')
        normArray,ranges,minVals = autoNorm(datingDataArray)
        m = normArray.shape[0]
        numOfTestData = int(m*Radio) #10%
        errorNumber = 0.0  #浮点数
        for i in range(numOfTestData): #90%
            classifierResult = classify(normArray[i,:],normArray[numOfTestData:m,:],
                datinglabels[numOfTestData:m],3)
            print("the test result:%d, the real result:%d"%(classifierResult,datinglabels[i]))
            if(classifierResult!=datinglabels[i]): errorNumber += 1.0
        print("the error rate is %f"%(errorNumber/(float(numOfTestData))))
    #约会网站测试函数
    def classifyPerson():
        resultList = ['not at all','in small doses','in large doses']
        ffMiles = float(input('flier miles'))
        percentTats = float(input('playing game')) #不再有raw_input函数
        iceCream = float(input('ice cream'))
        datingDataArray,datinglabels = filearray('datingTestSet2.txt')
        normArray,ranges,minVals = autoNorm(datingDataArray)
        inArr = array([ffMiles,percentTats,iceCream])
        #print(inArr)
        classifierResult = classify(((inArr - minVals)/ranges),normArray, datinglabels, 3)
        print(resultList[classifierResult-1])
    def imgVector(filename):
        returnVector = zeros((1,1024))
        fr = open(filename)
        for i in range(32):
            lineStr = fr.readline()
            for j in range(32):
                returnVector[0,32*i+j] = int(lineStr[j])
        #print(returnVector[0,0:32])
        return returnVector
    def handwritingClassTest():
        hwlabels = []
        trainingFileList = listdir('trainingDigits')
        m = len(trainingFileList) #list用len,array用shape[0]
        trainingArray = zeros((m,1024))    #储存训练矩阵
        for i in range(m):
            fileNameStr = trainingFileList[i] 
            fileStr = fileNameStr.split('.')[0] #['0_100', 'txt']
            print(fileStr) #0_102
            classNum = int(fileStr.split('_')[0])
            hwlabels.append(classNum)
            #hwlabels[i] = classNum
            trainingArray[i,:] = imgVector('trainingDigits/%s'%fileNameStr)
        testFileList = listdir('testDigits')
        errorNumber = 0.0
        mTest = len(testFileList)
        for i in range(mTest):
            fileNameStr = testFileList[i]
            fileStr = fileNameStr.split('.')[0] #['0_100', 'txt']
            print(fileStr) #0_102
            classNum = int(fileStr.split('_')[0])
            testVector = imgVector('testDigits/%s'%fileNameStr)
            classifierResult = classify(testVector,trainingArray,hwlabels,3)
            print("the test result:%d, the real result:%d"%(classifierResult,classNum))
            if(classifierResult!=classNum): errorNumber += 1.0
        print("the error rate is %f"%(errorNumber/(float(mTest))))
        # for i in range(len(hwlabels)):
        #     print(hwlabels[i])
    #main()
    #classifyPerson()
    #imgVector('testDigits/0_12.txt')
    handwritingClassTest()
    Code

  • 相关阅读:
    vim 编辑器使用
    PHP高并发高负载系统架构(转载)
    类的使用
    linux下EC20 4G模块驱动移植
    linux 4G模块拨号脚本
    linux4.1.4上移植ME909s-821,MU609 4G模块驱动
    shell脚本语之运算符
    vim的列编辑操作
    linux下普通用户添加 sudo 免密码
    4G模块在AM335x上的移植
  • 原文地址:https://www.cnblogs.com/littlepear/p/8269653.html
Copyright © 2020-2023  润新知