Given any permutation of the numbers {0, 1, 2,..., N−1}, it is easy to sort them in increasing order. But what if Swap(0, *)
is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
Input Specification:
Each input file contains one test case, which gives a positive N (≤) followed by a permutation sequence of {0, 1, ..., N−1}. All the numbers in a line are separated by a space.
Output Specification:
For each case, simply print in a line the minimum number of swaps need to sort the given permutation.
Sample Input:
10
3 5 7 2 6 4 9 0 8 1
Sample Output:
9
依旧采用柳神的办法(好精巧,不知道怎么想到的),柳太强了。
0号哨兵。第一位开始遍历,如果不与该位置相等,0号一直调整到相应位置,自己和0号位置交换。
#include <iostream> #include <map> #include <algorithm> using namespace std; int main() { int N, cnt = 0, tmp; scanf("%d", &N); map<int, int> m; for(int i = 0; i < N; i++){ scanf("%d", &tmp); m[tmp] = i; } for(int i = 1; i < N; i++) { if(i != m[i]) { while(m[0] != 0) { swap(m[0], m[m[0]]); cnt++; } if(i != m[i]) { swap(m[0], m[i]); cnt++; } } } cout << cnt; system("pause"); return 0; }