Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 3362 Accepted Submission(s): 1060 Problem Description This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence. Input Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself. Output output print L - the length of the greatest common increasing subsequence of both sequences. Sample Input 1 5 1 4 2 5 -12 4 -12 1 2 4 Sample Output 2
自己写的公式,min也是自己想到的,哈哈,太高兴了
#define _CRT_SECURE_NO_DEPRECATE #include<iostream> #include<string> #include<algorithm> #define MAX 502 using namespace std; int dp[MAX][MAX]; int a[MAX], b[MAX]; int main() { int T, m, n, min; cin >> T; while (T--){ cin >> m; for (int i = 0; i < m; i++){ cin >> a[i]; } cin >> n; for (int i = 0; i < n; i++){ cin >> b[i]; } min = INT_MIN; fill(dp[0], dp[0] + n, 0); for (int i = 0; i < m; i++){ for (int j = 0; j < n; j++){ if (a[i] == b[j] && a[i]>min){ min = a[i]; dp[i + 1][j + 1] = dp[i][j] + 1; } else{ dp[i + 1][j + 1] = max(dp[i][j + 1], dp[i + 1][j]); } } } cout << dp[m][n] << endl; if (T){ cout << endl; } } return 0; }