一.智能对话中的意图识别和槽填充联合建模,类似于知识图谱中的关系提取和实体识别。一种方法是利用两种模型分别建模;另一种是将两种模型整合到一起做联合建模型。意图识别基本上是文本分类,而槽填充基本上是序列标注。本方法是基于文章《Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling》中提到的另一种方法Attention-Based RNN Model做联合建模。模型结构如下图:
此模型利用birnn-attention实现:
1.意图识别是利用encoder中的最后一个time step中的双向隐层,再加上平均池化或者利用attention加权平均,最后接一个fc层进行分类
2.槽填充是序列标注,双向隐状态加attention权重,再经过一个单元grucell,最后接一个fc层分类。这里注意一点是,槽的每一步的预测输出会输入到grucell中的前向传输时间步中。
3.总的loss = 意图识别loss + 槽填充loss
二.模型程序(完整程序见https://github.com/jiangnanboy/intent_detection_and_slot_filling/tree/master/model2)
1.构建train及val 数据,采用torchtext。其中SOURCE是源句,TARGET是标注,LABEL是意图类别
''' build train and val dataset ''' tokenize = lambda s:s.split() SOURCE = data.Field(sequential=True, tokenize=tokenize, lower=True, use_vocab=True, init_token='<sos>', eos_token='<eos>', pad_token='<pad>', unk_token='<unk>', batch_first=True, fix_length=50, include_lengths=True) #include_lengths=True为方便之后使用torch的pack_padded_sequence TARGET = data.Field(sequential=True, tokenize=tokenize, lower=True, use_vocab=True, init_token='<sos>', eos_token='<eos>', pad_token='<pad>', unk_token='<unk>', batch_first=True, fix_length=50, include_lengths=True) #include_lengths=True为方便之后使用torch的pack_padded_sequence LABEL = data.Field( sequential=False, use_vocab=True) train, val = data.TabularDataset.splits( path=atis_data, skip_header=True, train='atis.train.csv', validation='atis.test.csv', format='csv', fields=[('index', None), ('intent', LABEL), ('source', SOURCE), ('target', TARGET)]) SOURCE.build_vocab(train, val) TARGET.build_vocab(train, val) LABEL.build_vocab(train, val) train_iter, val_iter = data.Iterator.splits( (train, val), batch_sizes=(32, len(val)), # 训练集设置为64,验证集整个集合用于测试 shuffle=True, sort_within_batch=True, #为true则一个batch内的数据会按sort_key规则降序排序 sort_key=lambda x: len(x.source)) #这里按src的长度降序排序,主要是为后面pack,pad操作)
2.构建模型
# build model device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 构建attention权重计算方式 class Attention(nn.Module): def __init__(self, hidden_dim): super(Attention, self).__init__() self.attn = nn.Linear((hidden_dim * 2), hidden_dim) self.v = nn.Linear(hidden_dim, 1, bias=False) def concat_score(self, hidden, encoder_output): seq_len = encoder_output.shape[1] hidden = hidden.unsqueeze(1).repeat(1, seq_len, 1) # [batch_size, seq_len, hidden_size] energy = torch.tanh(self.attn(torch.cat((hidden, encoder_output),dim=2))) # [batch_size, seq_len, hidden_dim] attention = self.v(energy).squeeze(2) #[batch_size, seq_len] return attention #[batch_size, seq_len] def forward(self, hidden, encoder_output): # hidden = [batch_size, hidden_size] # #encoder_output=[batch_size, seq_len, hidden_size] attn_energies = self.concat_score(hidden, encoder_output) return F.softmax(attn_energies, dim=1).unsqueeze(1) #softmax归一化,[batch_size, 1, seq_len] #构建模型 class BirnnAttention(nn.Module): def __init__(self, source_input_dim, source_emb_dim, hidden_dim, n_layers, dropout, pad_index, slot_output_size, intent_output_size, slot_embed_dim, predict_flag): super(BirnnAttention, self).__init__() self.pad_index = pad_index self.hidden_dim = hidden_dim//2 # 双向lstm self.n_layers = n_layers self.slot_output_size = slot_output_size # 是否预测模式 self.predict_flag = predict_flag self.source_embedding = nn.Embedding(source_input_dim, source_emb_dim, padding_idx=pad_index) # 双向gru,隐层维度是hidden_dim self.source_gru = nn.GRU(source_emb_dim, self.hidden_dim, n_layers, dropout=dropout, bidirectional=True, batch_first=True) #使用双向 # 单个cell的隐层维度与gru隐层维度一样,为hidden_dim self.gru_cell = nn.GRUCell(slot_embed_dim + (2 * hidden_dim), hidden_dim) self.attention = Attention(hidden_dim) # 意图intent预测 self.intent_output = nn.Linear(hidden_dim * 2, intent_output_size) # 槽slot预测 self.slot_output = nn.Linear(hidden_dim, slot_output_size) self.slot_embedding = nn.Embedding(slot_output_size, slot_embed_dim) def forward(self, source_input, source_len): ''' source_input:[batch_size, seq_len] source_len:[batch_size] ''' if self.predict_flag: assert len(source_input) == 1, '预测时一次输入一句话' seq_len = source_len[0] # 1.Encoder阶段,将输入的source进行编码 # source_embedded:[batch_size, seq_len, source_emb_dim] source_embedded = self.source_embedding(source_input) packed = torch.nn.utils.rnn.pack_padded_sequence(source_embedded, source_len, batch_first=True, enforce_sorted=True) #这里enfore_sotred=True要求数据根据词数排序 source_output, hidden = self.source_gru(packed) # source_output=[batch_size, seq_len, 2 * self.hidden_size],这里的2*self.hidden_size = hidden_dim # hidden=[n_layers * 2, batch_size, self.hidden_size] source_output, _ = torch.nn.utils.rnn.pad_packed_sequence(source_output, batch_first=True, padding_value=self.pad_index, total_length=len(source_input[0])) #这个会返回output以及压缩后的legnths ''' source_hidden[-2,:,:]是gru最后一步的forward source_hidden[-1,:,:]是gru最后一步的backward ''' # source_hidden=[batch_size, 2*self.hidden_size] source_hidden = torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim=1) #保存注意力向量 attention_context = torch.zeros(1, seq_len, self.hidden_dim * 2) output_tokens = [] aligns = source_output.transpose(0,1) #对齐向量 input = torch.tensor(2).unsqueeze(0) # 预测阶段解码器输入第一个token-> <sos> for s in range(seq_len): aligned = aligns[s].unsqueeze(1)# [batch_size, 1, hidden_size*2] # embedded=[1, 1, slot_embed_dim] slot_embedded = self.slot_embedding(input) slot_embedded = slot_embedded.unsqueeze(0) # 利用利用上一步的hidden与encoder_output,计算attention权重 # attention_weights=[batch_size, 1, seq_len] attention_weights = self.attention(source_hidden, source_output) ''' 以下是计算上下文:利用attention权重与encoder_output计算attention上下文向量 注意力权重分布用于产生编码器隐藏状态的加权和,加权平均的过程。得到的向量称为上下文向量 ''' context = attention_weights.bmm(source_output) attention_context[:,s,:] = context combined_grucell_input = torch.cat([aligned, slot_embedded, context], dim =2) source_hidden = self.gru_cell(combined_grucell_input.squeeze(1), source_hidden) slot_prediction = self.slot_output(source_hidden) input = slot_prediction.argmax(1) output_token = input.squeeze().detach().item() output_tokens.append(output_token) #意图识别 #拼接注意力向量和encoder的输出 combined_attention_sourceoutput = torch.cat([attention_context, source_output], dim=2) intent_outputs = self.intent_output(torch.mean(combined_attention_sourceoutput, dim = 1)) intent_outputs = intent_outputs.squeeze() intent_outputs = intent_outputs.argmax() return output_tokens, intent_outputs else: # 1.Encoder阶段,将输入的source进行编码 # source_embedded:[batch_size, seq_len, source_emb_dim] source_embedded = self.source_embedding(source_input) packed = torch.nn.utils.rnn.pack_padded_sequence(source_embedded, source_len, batch_first=True, enforce_sorted=True) #这里enfore_sotred=True要求数据根据词数排序 source_output, hidden = self.source_gru(packed) # source_output=[batch_size, seq_len, 2 * self.hidden_size],这里的2*self.hidden_size = hidden_dim # hidden=[n_layers * 2, batch_size, self.hidden_size] source_output, _ = torch.nn.utils.rnn.pad_packed_sequence(source_output, batch_first=True, padding_value=self.pad_index, total_length=len(source_input[0])) #这个会返回output以及压缩后的legnths ''' source_hidden[-2,:,:]是gru最后一步的forward source_hidden[-1,:,:]是gru最后一步的backward ''' # source_hidden=[batch_size, 2*self.hidden_size] source_hidden = torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim=1) # 2.Decoder阶段,预测slot与intent batch_size = source_input.shape[0] seq_len = source_input.shape[1] # 保存slot的预测概率 slot_outputs = torch.zeros(batch_size, seq_len, self.slot_output_size).to(device) #保存注意力向量 attention_context = torch.zeros(batch_size, seq_len, self.hidden_dim * 2).to(device) # 每个batch数据的第一个字符<sos>对应的是index是2 input = torch.tensor(2).repeat(batch_size).to(device) aligns = source_output.transpose(0,1) # 利用encoder output最后一层的每一个时间步 # 槽识别 for t in range(1, seq_len): ''' 解码器输入的初始hidden为encoder的最后一步的hidden 接收输出即predictions和新的hidden状态 ''' aligned = aligns[t].unsqueeze(1)# [batch_size, 1, hidden_size] # hidden_size包含前向和后向隐状态向量 input = input.unsqueeze(1) # input=[batch_size, 1] # hidden=[batch_size, hidden_size] 初始化为encoder的最后一层 [batch_size, hidden_size] # encoder_output=[batch_size, seq_len, hidden_dim*2] # aligned=[batch_size, 1, hidden_dim*2] # embedded=[batch_sze, 1, slot_embed_dim] slot_embedded = self.slot_embedding(input) # 利用利用上一步的hidden与encoder_output,计算attention权重 # attention_weights=[batch_size, 1, seq_len] attention_weights = self.attention(source_hidden, source_output) ''' 以下是计算上下文:利用attention权重与encoder_output计算attention上下文向量 注意力权重分布用于产生编码器隐藏状态的加权和,加权平均的过程。得到的向量称为上下文向量 ''' context = attention_weights.bmm(source_output) # [batch_size, 1, seq_len] * [batch_size, seq_len, hidden_dim]=[batch_size, 1, hidden_dim] attention_context[:,t,:] = context.squeeze(1) #combined_grucell_input=[batch_size, 1, (hidden_size + slot_embed_dim + hidden_dim)] combined_grucell_input = torch.cat([aligned, slot_embedded, context], dim =2) # [batch_size, hidden_dim] source_hidden = self.gru_cell(combined_grucell_input.squeeze(1), source_hidden) # 预测slot, [batch_size, slot_output_size] slot_prediction = self.slot_output(source_hidden) slot_outputs[:, t, :] = slot_prediction # 获取预测的最大概率的token input = slot_prediction.argmax(1) #意图识别,不同于原论文。这里拼接了slot所有时间步attention_context与句子编码后的输出,通过均值后作为意图识别的输入 #拼接注意力向量和encoder的输出,[batch_size, seq_len, hidden_dim * 2] combined_attention_sourceoutput = torch.cat([attention_context, source_output], dim=2) intent_outputs = self.intent_output(torch.mean(combined_attention_sourceoutput, dim = 1)) return slot_outputs, intent_outputs
3.loss,这里迭代的次数为10
4.predict预测