• 朴素贝叶斯与贝叶斯网络


    朴素贝叶斯与贝叶斯网络

    标签(空格分隔): 机器学习


    朴素贝叶斯

    朴素贝叶斯朴素在哪里呢? —— 两个假设

    • 一个特征出现的概率与其他特征(条件)独立;
    • 每个特征同等重要。

    朴素贝叶斯分类器

    (P(c|x) = frac{P(c)P(x|c)}{P(x)} = frac{P(x)}{P(x)}Pi_{i=1}^{d}P(x_{i}|c))
    1)计算先验概率及条件概率;
    2)对于给定的实例,用贝叶斯公式计算后验概率。
    在计算类条件概率时,如果不加平滑因子,则是利用极大似然估计;
    如果加上平滑因子,就是拉普拉斯平滑。

    一个贝叶斯决策的例子

    现在有两个袋子,袋子X中装有2颗红球和2颗黑球,还有1美元;袋子Y中装有1颗红球和2颗黑球。在选择袋子之前,可以从任意一个袋子中选择一个小球,如果摸出来的是红球,应该选哪个袋子?如果摸出来的是黑球。又应该选择哪个袋子?

    • 用R表示红球,用B表示黑球。
    • 选择每个袋子的概率:(P(X) = frac{1}{2}, P(Y) = frac{1}{2});
    • 选择了袋子X的条件下摸到红球的概率:(P(R|X) = frac{1}{2}),摸到黑球的概率:(P(B|X) = frac{1}{2});
    • 选择了袋子Y的条件下摸到红球的概率:(P(R|Y) = frac{1}{3}),摸到黑球的概率:(P(B|Y) = frac{2}{3});
    • 由全概率公式:摸到红球的概率(P(R) = P(R|X)P(X) + P(R|Y)P(Y) = frac{5}{12}); 摸到黑球的概率为(P(B) = P(B|X)P(X) + P(B|Y)P(Y) = frac{7}{12});
    • 由贝叶斯公式:
    • 摸到红球时,是袋子X的概率为:(P(X|R) = frac{P(R|X)P(X)}{P(R)} = frac{3}{5});
    • 摸到红球时,是袋子Y的概率为:(P(Y|R) = frac{P(R|Y)P(Y)}{P(R)} = frac{2}{5});
    • 摸到黑球时,是袋子X的概率为:(P(X|B) = frac{P(B|X)P(X)}{P(B)} = frac{3}{7});
    • 摸到黑球时,是袋子Y的概率为:(P(Y|B) = frac{P(B|Y)P(Y)}{P(B)} = frac{4}{7}).
    • 所以摸到的球是红色时,选择这个袋子;摸到的球是黑色时,选择另外一个袋子。

    图模型

    根据是否是有向图,可以分为有向图模型和无向图模型。
    有向图模型(又称为贝叶斯网络):包含隐马尔科夫模型,马尔科夫随机过程;
    无向图模型(又称为马尔科夫网络):条件随机场等

    贝叶斯网络

    朴素贝叶斯可以看做是贝叶斯网络的特殊情况:即该网络中无边,各个节点都是独立的。
    那么,当朴素贝叶斯中的强假设:独立同分布不成立时,应该如何解决呢?可以使用贝叶斯网络。
    贝叶斯网络借助有向无环图来刻画属性之间的依赖关系,并使用条件概率表来描述属性的联合概率分布。
    贝叶斯网络的学习主要包括3部分:贝叶斯网络(B)由结构(G)和参数( heta)构成,即(B = <G, heta>)

    • 结构,即创建贝叶斯模型;建模型通过领域知识和数据本身得出。
    • 学习,即估计模型中的参数;
    • 推断,即作出最后的决策。
  • 相关阅读:
    遮罩层点击空白退出代码
    不同浏览器的margin值与padding值
    让div自适应浏览器窗口居中显示
    导航相关(下方导航指示条居中)
    CSS相邻兄弟选择器
    使用font-size:0去掉inline-block元素之间的空隙
    box-sizing属性
    常见浏览器兼容性问题
    秋季编程总结
    POJ 1193 内存分配
  • 原文地址:https://www.cnblogs.com/little-YTMM/p/5668183.html
Copyright © 2020-2023  润新知