• 立体像对空间前方交会-点投影系数法(python实现)


    一、原理

     

    二、步骤

    a.用各自像片的角元素计算出左右像片的旋转矩阵R1和R2。

    b.根据左右像片的外方位元素计算摄影基线分量Bx,By,Bz。

    c.逐点计算像点的空间辅助坐标。

    d.计算投影系数。

    e.计算未知点的地面摄影测量坐标。

    f.重复以上步骤完成所有点的地面坐标的计算。

    三、示例代码

    # -*- coding: utf-8 -*-
    """
    Created on Mon Nov 25 08:18:30 2019
    
    @author: L JL
    """
    
    import numpy as np
    import math as m
    
    def r_mat(f,w,k):
       Rf = np.mat([[m.cos(f), 0, -m.sin(f)],
                  [0,         1,          0],
                  [m.sin(f), 0,  m.cos(f)]])
    
       Rw = np.mat([[1,         0,          0],
                  [0, m.cos(w), -m.sin(w)],
                  [0, m.sin(w),  m.cos(w)]])
        
       Rk = np.mat([[m.cos(k), -m.sin(k), 0],
                  [m.sin(k),  m.cos(k), 0],
                  [0,         0,          1]])
        
       R = Rf*Rw*Rk 
        
       return R
    
    def SpatialAuxiliaryCoordinate(xy,f,R):
        coor1 = np.mat([[xy[0]],
                          [xy[1]],
                           [-f]])
        coor2 = R*coor1
        return coor2
    def ProjectionCoefficient(SAC1,SAC2,B):
        N1 = (B[0,0]*SAC2[2,0]-B[2,0]*SAC2[0,0])/(SAC1[0,0]*SAC2[2,0]-SAC2[0,0]*SAC1[2,0])
        N2 = (B[0,0]*SAC1[2,0]-B[2,0]*SAC1[0,0])/(SAC1[0,0]*SAC2[2,0]-SAC2[0,0]*SAC1[2,0])
        return N1,N2
    
    
    
    
    #main
    left_HomonymousImagePoints = [0.153,91.798]    
    right_HomonymousImagePoints = [-78.672,89.122]
        
    left_In = np.mat([0,0,152.91])
    left_Ex = np.mat([[970302.448784],
               [-1138644.971216],
               [3154.584941],
               [0.010425],
               [-0.012437],
               [0.003380]])     
    right_In = np.mat([0,0,152.91])
    right_Ex = np.mat([[971265.303768],
                [-1138634.245942],
                [3154.784258],
                [0.008870],
                [-0.005062],
                [-0.008703]])
    
    R_L = np.mat(np.zeros((3,3)))
    R_R = np.mat(np.zeros((3,3)))    
    left_SACoordinate = np.mat(np.zeros((3,1)))
    right_SACoordinate = np.mat(np.zeros((3,1)))
    baselineComponent = np.mat(np.zeros((3,1)))
    
    R_L = r_mat(left_Ex[3,0],left_Ex[4,0],left_Ex[5,0])
    R_R = r_mat(right_Ex[3,0],right_Ex[4,0],right_Ex[5,0])
    
    #left_SpatialAuxiliaryCoordinate = R_L*left_In.T
    #right_SpatialAuxiliaryCoordinate = R_R*right_In.T
    left_SACoordinate = SpatialAuxiliaryCoordinate(left_HomonymousImagePoints,left_In[0,2],R_L)
    right_SACoordinate = SpatialAuxiliaryCoordinate(right_HomonymousImagePoints,right_In[0,2],R_R)
    
    baselineComponent = right_Ex[0:3,0] - left_Ex[0:3,0]
    N1,N2 = ProjectionCoefficient(left_SACoordinate,right_SACoordinate,baselineComponent)
    #GPhotogrammetrCoordinates
    GPCoordinates = np.mat(np.zeros((3,1)))
    GPCoordinates = ((left_Ex[0:3,0]+N1*left_SACoordinate) + (right_Ex[0:3,0]+N2*right_SACoordinate))/2
    
    print("左影像同名点:",left_HomonymousImagePoints)
    print("左影像同名点:",right_HomonymousImagePoints)
    print("地面点坐标:
             X=%f,
             Y=%f,
             Z=%f"
          %(GPCoordinates[0,0],GPCoordinates[1,0],GPCoordinates[2,0]))
  • 相关阅读:
    JavaWeb图片显示与存储
    sql将日期按照年月分组并统计数量
    response的作用
    TCP/IP学习笔记(1)-----基本概念
    TCP/IP学习笔记(2)---数据链路层
    TCP/IP学习笔记(3)----IP,ARP,RARP协议
    TCP/IP学习笔记(4)------ICMP,ping,traceroute
    TCP/IP学习笔记(5)------IP选路
    如何运行简单的scrapy
    difference among String,StringBuilder,StringBuffer
  • 原文地址:https://www.cnblogs.com/liqinglong/p/11985323.html
Copyright © 2020-2023  润新知