问题描述
有一长度为N(1< =N< =10)的地板,给定两种不同瓷砖:一种长度为1,另一种长度为2,数目不限。要将这个长度为N的地板铺满,一共有多少种不同的铺法?
例如,长度为4的地面一共有如下5种铺法:
4=1+1+1+1
4=2+1+1
4=1+2+1
4=1+1+2
4=2+2
编程用递归的方法求解上述问题。
输入格式
只有一个数N,代表地板的长度
输出格式
输出一个数,代表所有不同的瓷砖铺放方法的总数
样例输入
4
样例输出
5
解题思路:
就是dfs暴搜
#pragma GCC optimize(2) #include<bits/stdc++.h> using namespace std; inline int read() {int x=0,f=1;char c=getchar();while(c!='-'&&(c<'0'||c>'9'))c=getchar();if(c=='-')f=-1,c=getchar();while(c>='0'&&c<='9')x=x*10+c-'0',c=getchar();return f*x;} typedef long long ll; const int maxn = 1e5+10; int n; int sum; int ans; void dfs(int sum){ if(sum>n) return ; if(sum==n){ ans++; return ; } dfs(sum+1); dfs(sum+2); } int main() { cin>>n; dfs(0); printf("%d",ans); return 0; }