• 2021“MINIEYE杯”中国大学生算法设计超级联赛(1)1009. KD-Graph(并查集)


    Problem Description

    Let’s call a weighted connected undirected graph of n vertices and m edges KD-Graph, if the
    following conditions fulfill:

    * n vertices are strictly divided into K groups, each group contains at least one vertice

    * if vertices p and q ( p ≠ q ) are in the same group, there must be at least one path between p and q meet the max value in this path is less than or equal to D.

    * if vertices p and q ( p ≠ q ) are in different groups, there can’t be any path between p and q meet the max value in this path is less than or equal to D.

    You are given a weighted connected undirected graph G of n vertices and m edges and an integer K.

    Your task is find the minimum non-negative D which can make there is a way to divide the n vertices into K groups makes G satisfy the definition of KD-Graph.Or −1if there is no such D exist.

    Input

    The first line contains an integer T (1≤ T ≤5) representing the number of test cases.
    For each test case , there are three integers n,m,k(2≤n≤100000,1≤m≤500000,1≤k≤n) in the first line.
    Each of the next m lines contains three integers u,v and c (1≤v,u≤n,v≠u,1≤c≤109) meaning that there is an edge between vertices u and v with weight c.

    Output

    For each test case print a single integer in a new line.

    Sample Input

    2
    3 2 2
    1 2 3
    2 3 5
    3 2 2
    1 2 3
    2 3 3
    

    Sample Output

    3
    -1
    

    比赛的时候沉迷于优化二分+可持久化01trie的暴力,放过了这个签到题QAQ

    整体就是执行一个类似克鲁斯卡尔的过程,将边权从小到大排序然后不断取,若取出的边的两端点在同一个集合则无事;若不在同一个集合且合并前连通块数 > k + 1则正常合并同时--连通块数;若不在同一个集合且合并后连通块数 == k + 1说明合并完这条边后连通块数为k且满足所有块内的边<=D,因此可以暂时令D = 该边权,同时合并以及--连通块数;若不在同一个集合且合并后连通块数 < k + 1,此时需要判断该边权是否<=D,若是说明取当前的D会让一些权值<=D的边在连通块外,显然这个D是不合法的,但如果不取这个D的话分出来的连通块数必然小于k,因此此时就可以判断无解了。

    #include <bits/stdc++.h>
    #define N 100005
    #define M 5000005
    using namespace std;
    int n, m, k;
    struct edge{
    	int x, y, z;
    } e[M];
    bool cmp(edge a, edge b) {
    	return a.z < b.z;
    }
    int fa[500005];
    int get(int x) {
    	if(x == fa[x]) return x;
    	return fa[x] = get(fa[x]);
    }
    int main() {
    	//freopen("1.in", "r", stdin);
    	int t;
    	cin >> t;
    	while(t--) {
    		scanf("%d%d%d", &n, &m, &k);
    		for(int i = 1; i <= m; i++) {
    			scanf("%d%d%d", &e[i].x, &e[i].y, &e[i].z);
    		}
    		for(int i = 1; i <= n; i++) fa[i] = i;
    		sort(e + 1, e + m + 1, cmp);
    		int conn = n;
    		int D = 0x3f3f3f3f;
    		bool flag = 1;
    		if(k == n) {
    			D = 0;
    		}
    		for(int i = 1; i <= m; i++) {
    			if(D == 0) break;
    			int x = e[i].x, y = e[i].y, z = e[i].z;
    			int fx = get(x), fy = get(y);
    			//cout << z << endl;
    			if(fx == fy) {
    				continue;
    			} else {
    				if(conn > k + 1) {
    					 //不用管
    				} else if(conn == k + 1) {
    					D = z;
    				} else {
    					if(z <= D) {
    						flag = 0;
    					}
    					break;
    				}
    				fa[fx] = fy;
    				conn--;
    			}
    		}
    		if(!flag || D == 0x3f3f3f3f) cout << -1 << endl;
    		else cout << D << endl;
    	}
    	return 0;
    }
    
  • 相关阅读:
    yii2中的url美化
    一级域名301重定向到www二级域名
    使用meta来控制浏览器的渲染方式
    同一页面不同编码的提交处理
    Yii2.0 UrlManager
    sqlsever连接两个不同服务器上的数据库进行查询
    php 实现传入参数的传出
    xcode如何修改项目名称
    ios如何实现应用之间的跳转
    ios程序如何实现系统自带的分享
  • 原文地址:https://www.cnblogs.com/lipoicyclic/p/15037025.html
Copyright © 2020-2023  润新知