• Codeforces Round #624 (Div. 3) B. WeirdSort(排序)


    output
    standard output

    You are given an array aa of length nn .

    You are also given a set of distinct positions p1,p2,,pmp1,p2,…,pm , where 1pi<n1≤pi<n . The position pipi means that you can swap elements a[pi]a[pi] and a[pi+1]a[pi+1] . You can apply this operation any number of times for each of the given positions.

    Your task is to determine if it is possible to sort the initial array in non-decreasing order (a1a2ana1≤a2≤⋯≤an ) using only allowed swaps.

    For example, if a=[3,2,1]a=[3,2,1] and p=[1,2]p=[1,2] , then we can first swap elements a[2]a[2] and a[3]a[3] (because position 22 is contained in the given set pp ). We get the array a=[3,1,2]a=[3,1,2] . Then we swap a[1]a[1] and a[2]a[2] (position 11 is also contained in pp ). We get the array a=[1,3,2]a=[1,3,2] . Finally, we swap a[2]a[2] and a[3]a[3] again and get the array a=[1,2,3]a=[1,2,3] , sorted in non-decreasing order.

    You can see that if a=[4,1,2,3]a=[4,1,2,3] and p=[3,2]p=[3,2] then you cannot sort the array.

    You have to answer tt independent test cases.

    Input

    The first line of the input contains one integer tt (1t1001≤t≤100 ) — the number of test cases.

    Then tt test cases follow. The first line of each test case contains two integers nn and mm (1m<n1001≤m<n≤100 ) — the number of elements in aa and the number of elements in pp . The second line of the test case contains nn integers a1,a2,,ana1,a2,…,an (1ai1001≤ai≤100 ). The third line of the test case contains mm integers p1,p2,,pmp1,p2,…,pm (1pi<n1≤pi<n , all pipi are distinct) — the set of positions described in the problem statement.

    Output

    For each test case, print the answer — "YES" (without quotes) if you can sort the initial array in non-decreasing order (a1a2ana1≤a2≤⋯≤an ) using only allowed swaps. Otherwise, print "NO".

    Example
    Input
     
    6
    3 2
    3 2 1
    1 2
    4 2
    4 1 2 3
    3 2
    5 1
    1 2 3 4 5
    1
    4 2
    2 1 4 3
    1 3
    4 2
    4 3 2 1
    1 3
    5 2
    2 1 2 3 3
    1 4
    
    Output
     
    YES
    NO
    YES
    YES
    NO
    YES

    大意是给定序列a和p,通过一定次数的交换操作(只能swap(a[p[i]],a[p[i]+1]))能否让a序列单调不减。可以这么想,因为每次只能交换相邻两个数,所以当一个数要到达最终排序好的位置的话,肯定是一步一步挪过去的,自然想到冒泡,根据题意这里选择从前往后把大的数交换到后面,每次需要swap的时候,先检查下标是否在p数组里。理论上可以sort一遍p数组然后二分,但是看到数据量这么小直接O(n)检查也能过。
    #include <bits/stdc++.h>
    using namespace std;
    int a[105],p[105];
    int n,m;
    int main()
    {
        int t;
        cin>>t;
        while(t--)
        {
            cin>>n>>m;
            int i,j,k;
            bool flag=1;
            for(i=1;i<=n;i++)
            {
                scanf("%d",&a[i]);
            }
            for(i=1;i<=m;i++)
            {
                scanf("%d",&p[i]);
            }
            for(i=1;i<=n-1;i++)
            {
                for(j=1;j<=n-i;j++)
                {
                    if(a[j]>a[j+1])
                    {
                        int find=0;
                        for(k=1;k<=m;k++)
                        {
                            if(p[k]==j)
                            {
                                int t=a[j];
                                a[j]=a[j+1];
                                a[j+1]=t;
                                find=1;
                                break;
                            }
                        }
                        if(!find)
                        {
                            flag=0;
                            goto label;
                        }
                    }
                }
            }
            label:;
            if(!flag)
            {
                cout<<"NO"<<endl;
            }
            else
            {
                cout<<"YES"<<endl;
            }
    
        }
        return 0;
    }
  • 相关阅读:
    Linux_Rsync远程同步备份服务器
    Linux_Rsync远程同步备份服务器
    Linux_VMWare12 Install RHEL7
    Linux_VMWare12 Install RHEL7
    Linux_SquidProxyServer代理服务器
    Linux_SquidProxyServer代理服务器
    Linux_LAMP 最强大的动态网站解决方案
    Ozone Native ACL的应用
    Ozone Audit Log解析工具的应用
    Ozone数据探查服务Recon2.0设计
  • 原文地址:https://www.cnblogs.com/lipoicyclic/p/12373613.html
Copyright © 2020-2023  润新知