• [HG]腿部挂件 题解


    前言

    暴力跑的比正解快。
    以下暴力(循环展开+fread读入输出优化)

    #include<cstdio>
    #pragma GCC optimize(3, "Ofast")
    
    int a[200010];
    
    namespace fast_IO{
        const int IN_LEN = 10000000, OUT_LEN = 10000000;
        char ibuf[IN_LEN], obuf[OUT_LEN], *ih = ibuf + IN_LEN, *oh = obuf, *lastin = ibuf + IN_LEN, *lastout = obuf + OUT_LEN - 1;
        inline char getchar_(){return (ih == lastin) && (lastin = (ih = ibuf) + fread(ibuf, 1, IN_LEN, stdin), ih == lastin) ? EOF : *ih++;}
        inline void putchar_(const char x){if(oh == lastout) fwrite(obuf, 1, oh - obuf, stdout), oh = obuf; *oh ++= x;}
        inline void flush(){fwrite(obuf, 1, oh - obuf, stdout);}
        inline int read(){
            int x = 0; char ch = ' ';
            while (ch < '0' || ch > '9') ch = getchar_();
            while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar_(); return x;
        }
        inline void write(int x){
            if (x < 0) putchar_('-'), x = -x;
            if (x > 9) write(x / 10);
            putchar_(x % 10 + 48);
        }
    }
    
    using namespace fast_IO;
    
    #define max(a,b) (a>(b)?a:(b))
    
    int main(){
        const int n = read(); int q = read();
    	for (register int i = 1; i <= n; ++i)
    		a[i] = read();
    	while (q--){
    		const int x = read(), l = read(), rr = read();
    		register int ans = 0;
    		const int lft = ((rr - l) >> 2 << 2) + l;
    		for (register int j = l; j <= lft - 4; j += 4){
    			(ans < (x ^ a[j + 1])) && (ans = x ^ a[j + 1]);
    			(ans < (x ^ a[j + 2])) && (ans = x ^ a[j + 2]);
    			(ans < (x ^ a[j + 3])) && (ans = x ^ a[j + 3]);
    			(ans < (x ^ a[j + 4])) && (ans = x ^ a[j + 4]);
    		}
    		for (register int j = lft; j <= rr; ++j)
    			ans = max(ans, x ^ a[j + 1]);
    		write(ans), putchar_('
    ');
    	}
    	flush(); return 0;
    }
    
    

    题目

    给定一个长度为 (n(1 leq n leq 2 imes 10^5)) 的数列,
    给定 (q(1 leq q leq 2 imes 10^5)) 个询问,
    每个询问给定三个整数 (x, l, r)
    在区间 ([l,r]) 中选定一个数,使它与 (x) 的异或值最大。
    查询

    题解

    如果是查询区间是一个固定区间,很容易想到,使用trie树。
    那么如果查询不是固定区间,那么显然珂以使用可持久化trie树切掉此题,
    预计时间复杂度(Theta(n logn))
    但是博主才学疏浅,不会这个算法。
    就这么结束了吗?
    并没有,显然我们可以用类线段树结构维护trie树,复杂度(Theta(n log^2n))
    考场上常数过大 一不小心 TLE了
    后来一边query一边建树,就AC了。

    代码

    #pragma GCC optimize(3, "Ofast")
    #include <cstdio>
    
    namespace fast_IO{
        const int IN_LEN = 10000000, OUT_LEN = 10000000;
        char ibuf[IN_LEN], obuf[OUT_LEN], *ih = ibuf + IN_LEN, *oh = obuf, *lastin = ibuf + IN_LEN, *lastout = obuf + OUT_LEN - 1;
        inline char getchar_(){return (ih == lastin) && (lastin = (ih = ibuf) + fread(ibuf, 1, IN_LEN, stdin), ih == lastin) ? EOF : *ih++;}
        inline void putchar_(const char x){if(oh == lastout) fwrite(obuf, 1, oh - obuf, stdout), oh = obuf; *oh ++= x;}
        inline void flush(){fwrite(obuf, 1, oh - obuf, stdout);}
        int read(){
            int x = 0; char ch = ' ';
            while (ch < '0' || ch > '9') ch = getchar_();
            while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar_(); return x;
        }
        void write(int x){
            if (x < 0) putchar_('-'), x = -x;
            if (x > 9) write(x / 10);
            putchar_(x % 10 + '0');
        }
    }
    
    using namespace fast_IO;
    
    struct Trie{
        int c[2];
    } trie[57108864];
    int cnt = 0;
    
    void insert(int x, int rt){
        for (register int i = 1 << 29; i; i >>= 1){
            bool to = x & i;
            if (trie[rt].c[to] == -1){
                trie[rt].c[to] = ++cnt;
                trie[cnt].c[0] = trie[cnt].c[1] = -1;
            }
            rt = trie[rt].c[to];
        }
    }
    
    int query(int x, int rt){
        int res = 0;
        for (register int i = 1 << 29; i; i >>= 1){
            bool to = (x ^ i) & i;
            if (~trie[rt].c[to]){
                res += i;
                rt = trie[rt].c[to];
            }
            else rt = trie[rt].c[to ^ 1];
        }
        return res;
    }
    
    int a[200005];
    
    struct Seg{
        int root;
        int lc, rc;
    } seg[800005];
    
    inline int max(int a, int b){
        return ((a > b) ? a : b);
    }
    
    int querySeg(int pos, int l, int r, int x, int y, int v){
        if (x <= l && r <= y){
            if (!seg[pos].root){
                seg[pos].root = ++cnt;
                trie[cnt].c[0] = trie[cnt].c[1] = -1;
                for (register int i = l; i <= r; ++i)
                    insert(a[i], seg[pos].root);
            }
            return query(v, seg[pos].root);
        }
        int mid = l + r >> 1, res = 0;
        if (x <= mid)
            res = querySeg(pos << 1, l, mid, x, y, v);
        if (y > mid)
            res = max(res, querySeg(pos << 1 | 1, mid + 1, r, x, y, v));
        return res;
    }
    
    int main(){
        int n = read(), q = read();
        trie[0].c[0] = trie[0].c[1] = -1;
        for (register int i = 1; i <= n; ++i)
            a[i] = read();
        while (q--){
            int x = read(), l = read() + 1, r = read() + 1;
            write(querySeg(1, 1, n, l, r, x)), putchar_('
    ');
        }
        flush(); return 0;
    }
    
  • 相关阅读:
    记录下我常用的工具
    记录下Lambda常用的表现形式
    链式编程学习之练习篇
    MySQL5.6.35部署
    jdk+Tomcat环境
    查找Linux中内存和CPU使用率最高的进程
    Linux 双网卡绑定
    saltstack 把数据返回到mysql服务器
    Python中map,filter,reduce,zip的应用
    python使用psutil获取服务器信息
  • 原文地址:https://www.cnblogs.com/linzhengmin/p/11764932.html
Copyright © 2020-2023  润新知