• Leetcode | Maximum Product Subarray


    Leetcode 加新题了

    Find the contiguous subarray within an array (containing at least one number) which has the largest product.

    For example, given the array [2,3,-2,4],
    the contiguous subarray [2,3] has the largest product = 6.

    整理思路不难,就是维护一个包含当前位置的最大正数和最小负数。在处理负数的时候需要注意。

     1 class Solution {
     2 public:
     3     int maxProduct(int arr[], int n) {
     4         if (n <= 0) return 0;
     5         int maxPos = 1, minNeg = 1, max = INT_MIN;
     6         for (int i = 0; i < n; ++i) {
     7             if (arr[i] > 0) {
     8                 maxPos = maxPos * arr[i];
     9                 minNeg = minNeg > 0 ? 1: minNeg * arr[i];
    10                 if (maxPos > max) max = maxPos;
    11             } else if (arr[i] == 0) {
    12                 maxPos = minNeg = 1;
    13                 if (max < 0) max = 0;
    14             } else { // arr[i] < 0
    15                 int tmp = maxPos;
    16                 if (minNeg > 0) {
    17                     maxPos = 1;
    18                 } else {
    19                     maxPos = minNeg * arr[i];
    20                     if (maxPos > max) max = maxPos;
    21                 }
    22                 minNeg = tmp * arr[i];
    23                 if (minNeg > max) max = minNeg;
    24             }
    25         }
    26         return max;
    27     }
    28 };

     看了一下solution之后,还有更简洁的写法。我还是好弱。每天都能学到新东西啊。

     1 class Solution {
     2 public:
     3     int maxProduct(int arr[], int n) {
     4         if (n <= 0) return 0;
     5         int maxSoFar = arr[0], minSoFar = arr[0], ans = arr[0];
     6         for (int i = 1; i < n; ++i) {
     7             int tmp = maxSoFar;
     8             maxSoFar = max(max(arr[i], maxSoFar * arr[i]), minSoFar * arr[i]);
     9             minSoFar = min(min(arr[i], tmp * arr[i]), minSoFar * arr[i]);
    10             if (maxSoFar > ans) ans = maxSoFar;
    11         }
    12         return ans;
    13     }
    14 };
  • 相关阅读:
    Nginx配置中运行与启动的详细介绍
    php实现文件上传进度条
    C# 提取逗号分割的字符串
    【sas proc sql】out join
    【SAS NOTE】substr函数
    【sas proc sql】子查询
    【SAS NOTE】数字字符互换
    【SAS NOTE】数组
    【sas Notel】merge
    【sas sql proc】inner join or outer join
  • 原文地址:https://www.cnblogs.com/linyx/p/4034938.html
Copyright © 2020-2023  润新知