• Leetcode | Unique Binary Search Trees I && II


    Unique Binary Search Trees  I 

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n?

    For example,
    Given n = 3, there are a total of 5 unique BST's.

       1         3     3      2      1
               /     /      /       
         3     2     1      1   3      2
        /     /                        
       2     1         2                 3

    Method I

    递归就可以解。每次取出第i个数作为root,[0...i - 1]作为左子树,[i+1...n-1]作为右子树。

    class Solution {
    public:
        int numTrees(int n) {
            if (n <= 1) {
                return 1;
            }
            
            int count = 0;
            for (int i = 0; i < n; i++) {
                count += numTrees(i) * numTrees(n - i - 1);
            }
            return count;
        }
    };

    Method II

    动态规划。这其实是一个卡特兰数的例子。和Generate Parentheses类似。

     1 class Solution {
     2 public:
     3     
     4     int numTrees(int n) {
     5         vector<int> count(n + 1, 0);
     6         count[0] = count[1] = 1;
     7         
     8         for (int i = 2; i <= n; ++i) {
     9             for (int j = 0; j < i; ++j) {
    10                 count[i] += count[j] * count[i - j - 1];
    11             }
    12         }
    13         return count[n];
    14     }
    15 };

    Unique Binary Search Trees  II

     递归,虽然结果很多,但是没办法。从[s,e]中取出第i个数,以[s,i-1]构建左子树,以[i+1,e]构建右子树。组合一下。

     1 class Solution {
     2 public:
     3     vector<TreeNode*> generateTrees(int n) {
     4         return recursive(1, n);
     5     }
     6     
     7     vector<TreeNode*> recursive(int s, int e) {
     8         vector<TreeNode *> ret;
     9         if (s > e) {
    10             ret.push_back(NULL);
    11             return ret;
    12         }
    13         
    14         for (int i = s; i <= e; ++i) {
    15             vector<TreeNode *> lefts = recursive(s, i - 1);
    16             vector<TreeNode *> rights = recursive(i + 1, e);
    17             for (int j = 0; j < lefts.size(); ++j) {
    18                 for (int k = 0; k < rights.size(); ++k) {
    19                     TreeNode* root = new TreeNode(i);
    20                     root->left = lefts[j];
    21                     root->right = rights[k];
    22                     ret.push_back(root);
    23                 }
    24             }
    25         }
    26         return ret;
    27     }
    28 };
  • 相关阅读:
    什么人一亏再亏,什么人亿万富翁? —兼谈本周经济与股市
    数组排序
    倒水
    倒水
    lua string
    lua string
    xgqfrms™, xgqfrms® : xgqfrms's offical website of GitHub!
    xgqfrms™, xgqfrms® : xgqfrms's offical website of GitHub!
    xgqfrms™, xgqfrms® : xgqfrms's offical website of GitHub!
    xgqfrms™, xgqfrms® : xgqfrms's offical website of GitHub!
  • 原文地址:https://www.cnblogs.com/linyx/p/3732281.html
Copyright © 2020-2023  润新知