Unique Binary Search Trees I
Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 / / / 3 2 1 1 3 2 / / 2 1 2 3
Method I
递归就可以解。每次取出第i个数作为root,[0...i - 1]作为左子树,[i+1...n-1]作为右子树。
class Solution { public: int numTrees(int n) { if (n <= 1) { return 1; } int count = 0; for (int i = 0; i < n; i++) { count += numTrees(i) * numTrees(n - i - 1); } return count; } };
Method II
动态规划。这其实是一个卡特兰数的例子。和Generate Parentheses类似。
1 class Solution { 2 public: 3 4 int numTrees(int n) { 5 vector<int> count(n + 1, 0); 6 count[0] = count[1] = 1; 7 8 for (int i = 2; i <= n; ++i) { 9 for (int j = 0; j < i; ++j) { 10 count[i] += count[j] * count[i - j - 1]; 11 } 12 } 13 return count[n]; 14 } 15 };
Unique Binary Search Trees II
递归,虽然结果很多,但是没办法。从[s,e]中取出第i个数,以[s,i-1]构建左子树,以[i+1,e]构建右子树。组合一下。
1 class Solution { 2 public: 3 vector<TreeNode*> generateTrees(int n) { 4 return recursive(1, n); 5 } 6 7 vector<TreeNode*> recursive(int s, int e) { 8 vector<TreeNode *> ret; 9 if (s > e) { 10 ret.push_back(NULL); 11 return ret; 12 } 13 14 for (int i = s; i <= e; ++i) { 15 vector<TreeNode *> lefts = recursive(s, i - 1); 16 vector<TreeNode *> rights = recursive(i + 1, e); 17 for (int j = 0; j < lefts.size(); ++j) { 18 for (int k = 0; k < rights.size(); ++k) { 19 TreeNode* root = new TreeNode(i); 20 root->left = lefts[j]; 21 root->right = rights[k]; 22 ret.push_back(root); 23 } 24 } 25 } 26 return ret; 27 } 28 };