• Redis中的LRU淘汰策略分析


    Redis作为缓存使用时,一些场景下要考虑内存的空间消耗问题。Redis会删除过期键以释放空间,过期键的删除策略有两种:

    • 惰性删除:每次从键空间中获取键时,都检查取得的键是否过期,如果过期的话,就删除该键;如果没有过期,就返回该键。
    • 定期删除:每隔一段时间,程序就对数据库进行一次检查,删除里面的过期键。

    另外,Redis也可以开启LRU功能来自动淘汰一些键值对。

    LRU算法

    当需要从缓存中淘汰数据时,我们希望能淘汰那些将来不可能再被使用的数据,保留那些将来还会频繁访问的数据,但最大的问题是缓存并不能预言未来。一个解决方法就是通过LRU进行预测:最近被频繁访问的数据将来被访问的可能性也越大。缓存中的数据一般会有这样的访问分布:一部分数据拥有绝大部分的访问量。当访问模式很少改变时,可以记录每个数据的最后一次访问时间,拥有最少空闲时间的数据可以被认为将来最有可能被访问到。

    举例如下的访问模式,A每5s访问一次,B每2s访问一次,C与D每10s访问一次,|代表计算空闲时间的截止点:

    ~~~~~A~~~~~A~~~~~A~~~~A~~~~~A~~~~~A~~|
    ~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~|
    ~~~~~~~~~~C~~~~~~~~~C~~~~~~~~~C~~~~~~|
    ~~~~~D~~~~~~~~~~D~~~~~~~~~D~~~~~~~~~D|
    

    可以看到,LRU对于A、B、C工作的很好,完美预测了将来被访问到的概率B>A>C,但对于D却预测了最少的空闲时间。

    但是,总体来说,LRU算法已经是一个性能足够好的算法了

    LRU配置参数

    Redis配置中和LRU有关的有三个:

    • maxmemory: 配置Redis存储数据时指定限制的内存大小,比如100m。当缓存消耗的内存超过这个数值时, 将触发数据淘汰。该数据配置为0时,表示缓存的数据量没有限制, 即LRU功能不生效。64位的系统默认值为0,32位的系统默认内存限制为3GB
    • maxmemory_policy: 触发数据淘汰后的淘汰策略
    • maxmemory_samples: 随机采样的精度,也就是随即取出key的数目。该数值配置越大, 越接近于真实的LRU算法,但是数值越大,相应消耗也变高,对性能有一定影响,样本值默认为5。

    淘汰策略

    淘汰策略即maxmemory_policy的赋值有以下几种:

    • noeviction:如果缓存数据超过了maxmemory限定值,并且客户端正在执行的命令(大部分的写入指令,但DEL和几个指令例外)会导致内存分配,则向客户端返回错误响应
    • allkeys-lru: 对所有的键都采取LRU淘汰
    • volatile-lru: 仅对设置了过期时间的键采取LRU淘汰
    • allkeys-random: 随机回收所有的键
    • volatile-random: 随机回收设置过期时间的键
    • volatile-ttl: 仅淘汰设置了过期时间的键---淘汰生存时间TTL(Time To Live)更小的键

    volatile-lru, volatile-randomvolatile-ttl这三个淘汰策略使用的不是全量数据,有可能无法淘汰出足够的内存空间。在没有过期键或者没有设置超时属性的键的情况下,这三种策略和noeviction差不多。

    一般的经验规则:

    • 使用allkeys-lru策略:当预期请求符合一个幂次分布(二八法则等),比如一部分的子集元素比其它其它元素被访问的更多时,可以选择这个策略。
    • 使用allkeys-random:循环连续的访问所有的键时,或者预期请求分布平均(所有元素被访问的概率都差不多)
    • 使用volatile-ttl:要采取这个策略,缓存对象的TTL值最好有差异

    volatile-lruvolatile-random策略,当你想要使用单一的Redis实例来同时实现缓存淘汰和持久化一些经常使用的键集合时很有用。未设置过期时间的键进行持久化保存,设置了过期时间的键参与缓存淘汰。不过一般运行两个实例是解决这个问题的更好方法。

    为键设置过期时间也是需要消耗内存的,所以使用allkeys-lru这种策略更加节省空间,因为这种策略下可以不为键设置过期时间。

    近似LRU算法

    我们知道,LRU算法需要一个双向链表来记录数据的最近被访问顺序,但是出于节省内存的考虑,RedisLRU算法并非完整的实现。Redis并不会选择最久未被访问的键进行回收,相反它会尝试运行一个近似LRU的算法,通过对少量键进行取样,然后回收其中的最久未被访问的键。通过调整每次回收时的采样数量maxmemory-samples,可以实现调整算法的精度。

    根据Redis作者的说法,每个Redis Object可以挤出24 bits的空间,但24 bits是不够存储两个指针的,而存储一个低位时间戳是足够的,Redis Object以秒为单位存储了对象新建或者更新时的unix time,也就是LRU clock,24 bits数据要溢出的话需要194天,而缓存的数据更新非常频繁,已经足够了。

    Redis的键空间是放在一个哈希表中的,要从所有的键中选出一个最久未被访问的键,需要另外一个数据结构存储这些源信息,这显然不划算。最初,Redis只是随机的选3个key,然后从中淘汰,后来算法改进到了N个key的策略,默认是5个。

    Redis3.0之后又改善了算法的性能,会提供一个待淘汰候选key的pool,里面默认有16个key,按照空闲时间排好序。更新时从Redis键空间随机选择N个key,分别计算它们的空闲时间idle,key只会在pool不满或者空闲时间大于pool里最小的时,才会进入pool,然后从pool中选择空闲时间最大的key淘汰掉。

    真实LRU算法与近似LRU的算法可以通过下面的图像对比:

    浅灰色带是已经被淘汰的对象,灰色带是没有被淘汰的对象,绿色带是新添加的对象。可以看出,maxmemory-samples值为5时Redis 3.0效果比Redis 2.8要好。使用10个采样大小的Redis 3.0的近似LRU算法已经非常接近理论的性能了。

    数据访问模式非常接近幂次分布时,也就是大部分的访问集中于部分键时,LRU近似算法会处理得很好。

    在模拟实验的过程中,我们发现如果使用幂次分布的访问模式,真实LRU算法和近似LRU算法几乎没有差别。

    LRU源码分析

    Redis中的键与值都是redisObject对象:

    typedef struct redisObject {
        unsigned type:4;
        unsigned encoding:4;
        unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or
                                * LFU data (least significant 8 bits frequency
                                * and most significant 16 bits access time). */
        int refcount;
        void *ptr;
    } robj;

    unsigned的低24 bits的lru记录了redisObj的LRU time。

    Redis命令访问缓存的数据时,均会调用函数lookupKey:

    robj *lookupKey(redisDb *db, robj *key, int flags) {
        dictEntry *de = dictFind(db->dict,key->ptr);
        if (de) {
            robj *val = dictGetVal(de);
    
            /* Update the access time for the ageing algorithm.
             * Don't do it if we have a saving child, as this will trigger
             * a copy on write madness. */
            if (server.rdb_child_pid == -1 &&
                server.aof_child_pid == -1 &&
                !(flags & LOOKUP_NOTOUCH))
            {
                if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
                    updateLFU(val);
                } else {
                    val->lru = LRU_CLOCK();
                }
            }
            return val;
        } else {
            return NULL;
        }
    }

    该函数在策略为LRU(非LFU)时会更新对象的lru值, 设置为LRU_CLOCK()值:

    /* Return the LRU clock, based on the clock resolution. This is a time
     * in a reduced-bits format that can be used to set and check the
     * object->lru field of redisObject structures. */
    unsigned int getLRUClock(void) {
        return (mstime()/LRU_CLOCK_RESOLUTION) & LRU_CLOCK_MAX;
    }
    
    /* This function is used to obtain the current LRU clock.
     * If the current resolution is lower than the frequency we refresh the
     * LRU clock (as it should be in production servers) we return the
     * precomputed value, otherwise we need to resort to a system call. */
    unsigned int LRU_CLOCK(void) {
        unsigned int lruclock;
        if (1000/server.hz <= LRU_CLOCK_RESOLUTION) {
            atomicGet(server.lruclock,lruclock);
        } else {
            lruclock = getLRUClock();
        }
        return lruclock;
    }

    LRU_CLOCK()取决于LRU_CLOCK_RESOLUTION(默认值1000)LRU_CLOCK_RESOLUTION代表了LRU算法的精度,即一个LRU的单位是多长。server.hz代表服务器刷新的频率,如果服务器的时间更新精度值比LRU的精度值要小,LRU_CLOCK()直接使用服务器的时间,减小开销。

    Redis处理命令的入口是processCommand:

    int processCommand(client *c) {
    
        /* Handle the maxmemory directive.
         *
         * Note that we do not want to reclaim memory if we are here re-entering
         * the event loop since there is a busy Lua script running in timeout
         * condition, to avoid mixing the propagation of scripts with the
         * propagation of DELs due to eviction. */
        if (server.maxmemory && !server.lua_timedout) {
            int out_of_memory = freeMemoryIfNeededAndSafe() == C_ERR;
            /* freeMemoryIfNeeded may flush slave output buffers. This may result
             * into a slave, that may be the active client, to be freed. */
            if (server.current_client == NULL) return C_ERR;
    
            /* It was impossible to free enough memory, and the command the client
             * is trying to execute is denied during OOM conditions or the client
             * is in MULTI/EXEC context? Error. */
            if (out_of_memory &&
                (c->cmd->flags & CMD_DENYOOM ||
                 (c->flags & CLIENT_MULTI && c->cmd->proc != execCommand))) {
                flagTransaction(c);
                addReply(c, shared.oomerr);
                return C_OK;
            }
        }
    }

    只列出了释放内存空间的部分,freeMemoryIfNeededAndSafe为释放内存的函数:

    int freeMemoryIfNeeded(void) {
        /* By default replicas should ignore maxmemory
         * and just be masters exact copies. */
        if (server.masterhost && server.repl_slave_ignore_maxmemory) return C_OK;
    
        size_t mem_reported, mem_tofree, mem_freed;
        mstime_t latency, eviction_latency;
        long long delta;
        int slaves = listLength(server.slaves);
    
        /* When clients are paused the dataset should be static not just from the
         * POV of clients not being able to write, but also from the POV of
         * expires and evictions of keys not being performed. */
        if (clientsArePaused()) return C_OK;
        if (getMaxmemoryState(&mem_reported,NULL,&mem_tofree,NULL) == C_OK)
            return C_OK;
    
        mem_freed = 0;
    
        if (server.maxmemory_policy == MAXMEMORY_NO_EVICTION)
            goto cant_free; /* We need to free memory, but policy forbids. */
    
        latencyStartMonitor(latency);
        while (mem_freed < mem_tofree) {
            int j, k, i, keys_freed = 0;
            static unsigned int next_db = 0;
            sds bestkey = NULL;
            int bestdbid;
            redisDb *db;
            dict *dict;
            dictEntry *de;
    
            if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) ||
                server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL)
            {
                struct evictionPoolEntry *pool = EvictionPoolLRU;
    
                while(bestkey == NULL) {
                    unsigned long total_keys = 0, keys;
    
                    /* We don't want to make local-db choices when expiring keys,
                     * so to start populate the eviction pool sampling keys from
                     * every DB. */
                    for (i = 0; i < server.dbnum; i++) {
                        db = server.db+i;
                        dict = (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) ?
                                db->dict : db->expires;
                        if ((keys = dictSize(dict)) != 0) {
                            evictionPoolPopulate(i, dict, db->dict, pool);
                            total_keys += keys;
                        }
                    }
                    if (!total_keys) break; /* No keys to evict. */
    
                    /* Go backward from best to worst element to evict. */
                    for (k = EVPOOL_SIZE-1; k >= 0; k--) {
                        if (pool[k].key == NULL) continue;
                        bestdbid = pool[k].dbid;
    
                        if (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) {
                            de = dictFind(server.db[pool[k].dbid].dict,
                                pool[k].key);
                        } else {
                            de = dictFind(server.db[pool[k].dbid].expires,
                                pool[k].key);
                        }
    
                        /* Remove the entry from the pool. */
                        if (pool[k].key != pool[k].cached)
                            sdsfree(pool[k].key);
                        pool[k].key = NULL;
                        pool[k].idle = 0;
    
                        /* If the key exists, is our pick. Otherwise it is
                         * a ghost and we need to try the next element. */
                        if (de) {
                            bestkey = dictGetKey(de);
                            break;
                        } else {
                            /* Ghost... Iterate again. */
                        }
                    }
                }
            }
    
            /* volatile-random and allkeys-random policy */
            else if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM ||
                     server.maxmemory_policy == MAXMEMORY_VOLATILE_RANDOM)
            {
                /* When evicting a random key, we try to evict a key for
                 * each DB, so we use the static 'next_db' variable to
                 * incrementally visit all DBs. */
                for (i = 0; i < server.dbnum; i++) {
                    j = (++next_db) % server.dbnum;
                    db = server.db+j;
                    dict = (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM) ?
                            db->dict : db->expires;
                    if (dictSize(dict) != 0) {
                        de = dictGetRandomKey(dict);
                        bestkey = dictGetKey(de);
                        bestdbid = j;
                        break;
                    }
                }
            }
    
            /* Finally remove the selected key. */
            if (bestkey) {
                db = server.db+bestdbid;
                robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
                propagateExpire(db,keyobj,server.lazyfree_lazy_eviction);
                /* We compute the amount of memory freed by db*Delete() alone.
                 * It is possible that actually the memory needed to propagate
                 * the DEL in AOF and replication link is greater than the one
                 * we are freeing removing the key, but we can't account for
                 * that otherwise we would never exit the loop.
                 *
                 * AOF and Output buffer memory will be freed eventually so
                 * we only care about memory used by the key space. */
                delta = (long long) zmalloc_used_memory();
                latencyStartMonitor(eviction_latency);
                if (server.lazyfree_lazy_eviction)
                    dbAsyncDelete(db,keyobj);
                else
                    dbSyncDelete(db,keyobj);
                latencyEndMonitor(eviction_latency);
                latencyAddSampleIfNeeded("eviction-del",eviction_latency);
                latencyRemoveNestedEvent(latency,eviction_latency);
                delta -= (long long) zmalloc_used_memory();
                mem_freed += delta;
                server.stat_evictedkeys++;
                notifyKeyspaceEvent(NOTIFY_EVICTED, "evicted",
                    keyobj, db->id);
                decrRefCount(keyobj);
                keys_freed++;
    
                /* When the memory to free starts to be big enough, we may
                 * start spending so much time here that is impossible to
                 * deliver data to the slaves fast enough, so we force the
                 * transmission here inside the loop. */
                if (slaves) flushSlavesOutputBuffers();
    
                /* Normally our stop condition is the ability to release
                 * a fixed, pre-computed amount of memory. However when we
                 * are deleting objects in another thread, it's better to
                 * check, from time to time, if we already reached our target
                 * memory, since the "mem_freed" amount is computed only
                 * across the dbAsyncDelete() call, while the thread can
                 * release the memory all the time. */
                if (server.lazyfree_lazy_eviction && !(keys_freed % 16)) {
                    if (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_OK) {
                        /* Let's satisfy our stop condition. */
                        mem_freed = mem_tofree;
                    }
                }
            }
    
            if (!keys_freed) {
                latencyEndMonitor(latency);
                latencyAddSampleIfNeeded("eviction-cycle",latency);
                goto cant_free; /* nothing to free... */
            }
        }
        latencyEndMonitor(latency);
        latencyAddSampleIfNeeded("eviction-cycle",latency);
        return C_OK;
    
    cant_free:
        /* We are here if we are not able to reclaim memory. There is only one
         * last thing we can try: check if the lazyfree thread has jobs in queue
         * and wait... */
        while(bioPendingJobsOfType(BIO_LAZY_FREE)) {
            if (((mem_reported - zmalloc_used_memory()) + mem_freed) >= mem_tofree)
                break;
            usleep(1000);
        }
        return C_ERR;
    }
    
    /* This is a wrapper for freeMemoryIfNeeded() that only really calls the
     * function if right now there are the conditions to do so safely:
     *
     * - There must be no script in timeout condition.
     * - Nor we are loading data right now.
     *
     */
    int freeMemoryIfNeededAndSafe(void) {
        if (server.lua_timedout || server.loading) return C_OK;
        return freeMemoryIfNeeded();
    }

    几种淘汰策略maxmemory_policy就是在这个函数里面实现的。

    当采用LRU时,可以看到,从0号数据库开始(默认16个),根据不同的策略,选择redisDbdict(全部键)或者expires(有过期时间的键),用来更新候选键池子poolpool更新策略是evictionPoolPopulate:

    void evictionPoolPopulate(int dbid, dict *sampledict, dict *keydict, struct evictionPoolEntry *pool) {
        int j, k, count;
        dictEntry *samples[server.maxmemory_samples];
    
        count = dictGetSomeKeys(sampledict,samples,server.maxmemory_samples);
        for (j = 0; j < count; j++) {
            unsigned long long idle;
            sds key;
            robj *o;
            dictEntry *de;
    
            de = samples[j];
            key = dictGetKey(de);
    
            /* If the dictionary we are sampling from is not the main
             * dictionary (but the expires one) we need to lookup the key
             * again in the key dictionary to obtain the value object. */
            if (server.maxmemory_policy != MAXMEMORY_VOLATILE_TTL) {
                if (sampledict != keydict) de = dictFind(keydict, key);
                o = dictGetVal(de);
            }
    
            /* Calculate the idle time according to the policy. This is called
             * idle just because the code initially handled LRU, but is in fact
             * just a score where an higher score means better candidate. */
            if (server.maxmemory_policy & MAXMEMORY_FLAG_LRU) {
                idle = estimateObjectIdleTime(o);
            } else if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
                /* When we use an LRU policy, we sort the keys by idle time
                 * so that we expire keys starting from greater idle time.
                 * However when the policy is an LFU one, we have a frequency
                 * estimation, and we want to evict keys with lower frequency
                 * first. So inside the pool we put objects using the inverted
                 * frequency subtracting the actual frequency to the maximum
                 * frequency of 255. */
                idle = 255-LFUDecrAndReturn(o);
            } else if (server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL) {
                /* In this case the sooner the expire the better. */
                idle = ULLONG_MAX - (long)dictGetVal(de);
            } else {
                serverPanic("Unknown eviction policy in evictionPoolPopulate()");
            }
    
            /* Insert the element inside the pool.
             * First, find the first empty bucket or the first populated
             * bucket that has an idle time smaller than our idle time. */
            k = 0;
            while (k < EVPOOL_SIZE &&
                   pool[k].key &&
                   pool[k].idle < idle) k++;
            if (k == 0 && pool[EVPOOL_SIZE-1].key != NULL) {
                /* Can't insert if the element is < the worst element we have
                 * and there are no empty buckets. */
                continue;
            } else if (k < EVPOOL_SIZE && pool[k].key == NULL) {
                /* Inserting into empty position. No setup needed before insert. */
            } else {
                /* Inserting in the middle. Now k points to the first element
                 * greater than the element to insert.  */
                if (pool[EVPOOL_SIZE-1].key == NULL) {
                    /* Free space on the right? Insert at k shifting
                     * all the elements from k to end to the right. */
    
                    /* Save SDS before overwriting. */
                    sds cached = pool[EVPOOL_SIZE-1].cached;
                    memmove(pool+k+1,pool+k,
                        sizeof(pool[0])*(EVPOOL_SIZE-k-1));
                    pool[k].cached = cached;
                } else {
                    /* No free space on right? Insert at k-1 */
                    k--;
                    /* Shift all elements on the left of k (included) to the
                     * left, so we discard the element with smaller idle time. */
                    sds cached = pool[0].cached; /* Save SDS before overwriting. */
                    if (pool[0].key != pool[0].cached) sdsfree(pool[0].key);
                    memmove(pool,pool+1,sizeof(pool[0])*k);
                    pool[k].cached = cached;
                }
            }
    
            /* Try to reuse the cached SDS string allocated in the pool entry,
             * because allocating and deallocating this object is costly
             * (according to the profiler, not my fantasy. Remember:
             * premature optimizbla bla bla bla. */
            int klen = sdslen(key);
            if (klen > EVPOOL_CACHED_SDS_SIZE) {
                pool[k].key = sdsdup(key);
            } else {
                memcpy(pool[k].cached,key,klen+1);
                sdssetlen(pool[k].cached,klen);
                pool[k].key = pool[k].cached;
            }
            pool[k].idle = idle;
            pool[k].dbid = dbid;
        }
    }

    Redis随机选择maxmemory_samples数量的key,然后计算这些key的空闲时间idle time,当满足条件时(比pool中的某些键的空闲时间还大)就可以进pool。pool更新之后,就淘汰pool中空闲时间最大的键。

    estimateObjectIdleTime用来计算Redis对象的空闲时间:

    /* Given an object returns the min number of milliseconds the object was never
     * requested, using an approximated LRU algorithm. */
    unsigned long long estimateObjectIdleTime(robj *o) {
        unsigned long long lruclock = LRU_CLOCK();
        if (lruclock >= o->lru) {
            return (lruclock - o->lru) * LRU_CLOCK_RESOLUTION;
        } else {
            return (lruclock + (LRU_CLOCK_MAX - o->lru)) *
                        LRU_CLOCK_RESOLUTION;
        }
    }

    空闲时间基本就是就是对象的lru和全局的LRU_CLOCK()的差值乘以精度LRU_CLOCK_RESOLUTION,将秒转化为了毫秒。

    参考链接

  • 相关阅读:
    【内网穿透】【natapp】web服务映射
    【javascript】日期转字符串
    【springcloud】Transaction rolled back because it has been marked as rollback-only
    MySQL 快速创建索引
    MySQL 快速导入大量数据 资料收集
    基于WinCE的JSON 类库 源码
    C# 模拟提交 Form表单的数据
    git恢复删除的分支及内容
    js数组push方法使用注意
    mint-ui的search组件如何在键盘显示搜索按钮
  • 原文地址:https://www.cnblogs.com/linxiyue/p/10945216.html
Copyright © 2020-2023  润新知