• C++ OpenCV常用的一些函数


    Mat matBinary, matGray, matOut;

    //***********读图 show图***********
    Mat inMat = imread("pic.bmp", -1); //读进原图
    //Mat inMat = imread("pic.bmp", 0) //将原图转为单通道灰度图在读进
    //Mat inMat = imread("pic.bmp", 1) //将原图转为三通道RGB图在读进

    imshow("winname", inMat); //show出inMat


    //***********腐蚀 膨胀***********
    Mat element = getStructuringElement(MORPH_RECT, Size(11,11));
    dilate(matBinary, matBinary, element); //膨胀
    erode(matBinary, matBinary, element);//腐蚀


    //***********二值化***********
    threshold(matGray, matBinary, 0, 255, THRESH_BINARY | THRESH_OTSU); //大津法,自动计算二值化阈值,能够有效的区分出前景和背景
    //threshold(matGray, matBinary, 177, 255, THRESH_BINARY); //灰度值在170-255间的值置为255
    //adaptiveThreshold(inMat, outMat, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 93, 7);//自适应二值化。通过图像的局部特征自适应的设定阈值,做出二值化处理(倒数第二个参数)


    //***********卷积************
    Mat kernel = (Mat_<float>(3,3) << -1,-1,-1,2,3,2,-1,-1,-1); //边缘图
    filter2D(matGray, matOut, -1, kernel);


    //***********找轮廓************
    vector<vector<Point>> contours;
    vector<Vec4i> hierarchy;

    findContours( matBinary, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE );//必须用二值化的图片
    for (int i = 0; i < contours.size(); i++)
    {
    Rect rect = boundingRect(contours[i]); //找出轮廓最小水平矩形 rect包含矩形左上角坐标,和矩形的长,宽,面积

    //RotatedRect rotateRect = minAreaRect(contours[i]); //找出轮廓最小矩形 rotateRect包含 矩形四个角点:P[0]为四个点中y坐标最大的点,顺时针,矩形角度:角度在[0,-90]之间
    //Point2f p[4];
    //rotateRect.points(p);

    //Point2f center; float radius;
    //minEnclosingCircle(contours[i], center, radius);//找出轮廓最小外接圆圆心和半径
    }


    //***********拼接两张图************
    vconcat(inMat1, inMat2, saveMat); //横向拼接,两张图的高度一样
    hconcat(inMat1, inMat2, saveMat); //竖向拼接,两张图的宽度需要一样


    //***********模板匹配************
    Mat matResult;
    matchTemplate(matCheck, matGolden, matResult, cv::TM_CCOEFF_NORMED);
    //通过minMaxLoc定位最佳匹配位置
    double minValue = -1, maxValue = 1;
    cv::Point minLocation, maxLocation;//相似区域左上角坐标
    cv::Point matchLocation;
    minMaxLoc(matResult, &minValue, &maxValue, &minLocation, &maxLocation, cv::Mat());
    qDebug()<< "匹配度:" << maxValue;
    Rect rect(maxLocation.x, maxLocation.y, matGolden.cols, matGolden.rows);//相似度最高区域
    cv::cvtColor(matCheck, checkRoi, cv::COLOR_GRAY2BGR); //转为3通道图
    cv::rectangle(matCheck, rect, cv::Scalar(0, 0, 255),1, cv::LINE_8,0);//框出最相似区域
    putText(matCheck, text.toStdString(), maxLocation, cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(0, 255, 0), 1, 8, false);//指定位置写文字


    //***********画线************
    line(matCheck, p[0], p[1], Scalar(255,255,255), 1);//用白线连接p[0] p[1]


    //***********更改rgb图的单个像素点值************
    Point pos;
    matCheck.at<Vec3b>(pos)[0] = 225; //B
    matCheck.at<Vec3b>(pos)[1] = 225; //G
    matCheck.at<Vec3b>(pos)[2] = 225; //R

    //***********更改灰度图的单个像素点值************
    matGray.at<uchar>(i, j) = 255; // i图片的行,j图片的列 --->取图片的像素点和图片上某一点的坐标的表示方法不同 Point p(j, i)表示坐标。i, j搞反,容易发生越界,导致crash。

    //***********求rgb图片的平均R G B 值
    bool MainWindow::GetAverageColor(Mat &matSrc,Scalar averaScalar)
    {
    if(SourceMat.empty()||SourceMat.channels()<3)
    {
    return false;
    }
    Mat ImgRGB;
    ImgRGB = matSrc.clone();
    averaScalar=cv::mean(ImgRGB); //平均RGB值

    Mat matRes;
    inRange(matSrc, Scalar(averaScalar[0]-30, averaScalar[1]-30, averaScalar[2]-30), Scalar(averaScalar[0]+30, averaScalar[1]+30, averaScalar[2]+30), matRes); //筛选出rgb值在平均值正负30范围内的点

    return true;
    }

    //***************卷积核********************
    void adjustBrightnessContrast(InputArray src, OutputArray dst)
    {
    Mat input = src.getMat();
    dst.create(src.size(), src.type());
    Mat output = dst.getMat();
    Mat imageEnhance;
    //Mat kernel = (Mat_<float>(3, 3) << -2, -1, 0, -1, 1, 1, 0, 1, 2);//浮雕
    //Mat kernel = (Mat_<float>(3, 3) << 0, -1, 0, 0, 5, 0, 0, -1, 0);//亮度增强
    Mat kernel = (Mat_<float>(3, 3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);//锐化
    //Mat kernel = (Mat_<float>(3, 3) << 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4);//邻近平均滤波,模糊处理
    //Mat kernel = (Mat_<float>(3, 3) << -1,-1,-1,-1,9,-1,-1,-1,-1);//超锐化
    //Mat kernel = (Mat_<float>(3, 3) << -1, -1, -1, -1, 8.5, -1, -1, -1, -1);//亮度减弱+锐化
    //Mat kernel = (Mat_<float>(3, 3) << 0, -1, 0, -1, 4.5, -1, 0, -1, 0);//亮度减弱
    //Mat kernel = (Mat_<float>(3, 3) << -1,-1,-1,2,3,2,-1,-1,-1);//边缘图
    //Mat kernel = (Mat_<float>(7, 7) << -1,-1,-1,-1,-1,-1,-1,
    // -1,-1,-1,-1,-1,-1,-1,
    // 1.5, 1.5, 1.5, 1.5, 1.5,1.5,1.5,
    // 1.5, 1.5, 1.5, 1.5, 1.5,1.5,1.5,
    // 1.5, 1.5, 1.5, 1.5, 1.5,1.5,1.5,
    // -1, -1, -1, -1, -1,-1,-1,
    // -1,-1,-1,-1,-1,-1,-1);
    /*Mat kernel = (Mat_<float>(5, 5) << -9,-9,-9,-9,-9,
    9,9,9,9,9,
    -1,2,3,2,-1,
    9,9,9,9,9,
    -9,-9,-9,-9,-9);*/
    //Mat kernel = (Mat_<float>(3, 3) << -1,-1,-1,-1,9,-1,-1,-1,-1);
    Mat sss;
    medianBlur(src,sss,7);
    filter2D(sss, imageEnhance, CV_8UC3, kernel);
    imageEnhance.copyTo(output);
    }

  • 相关阅读:
    二级缓存
    java面试题
    BRD,MRD,PRD文档
    程序做处理时,try..catch和if..else的区别
    关于java中字符串截取
    导出oracle数据库表(备份表)操作命令
    WSDL文件生成java类
    Linux下redis安装(单机版)
    Springboot2.0访问Redis集群
    Spring Cloud Sleuth通过Kafka将链路追踪日志输出到ELK
  • 原文地址:https://www.cnblogs.com/linxisuo/p/13641398.html
Copyright © 2020-2023  润新知