• Python_oldboy_自动化运维之路(八)


    本节内容:

    1. 列表生成式,迭代器,生成器
    2. Json & pickle 数据序列化
    3. 软件目录结构规范
    4. 作业:ATM项目开发

    1.列表生成式,迭代器,生成器

    1.列表生成式

    #【列表生成】
    #1.列表循环+1
    a = [1,2,3,4,63]
    
    for i,v in enumerate(a):
        print(i,v)
        a[i] = v+1
    
    print(a)
    
    #2.列表循环乘自己
    a=[i*i for i in a]
    print(a)
    
    #3.大于5的乘自己,三元运算
    a=[i*i if i>5 else i for i in a]
    print(a)
    View Code

    2.生成器

      通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

      一边循环一边计算的机制,称为生成器:generator 好处:节省空间

      只要把一个列表生成式的[]改成(),就创建了一个generator:

    >>> L = [x * x for x in range(10)]
    >>> L
    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    >>> g = (x * x for x in range(10))
    >>> g
    <generator object <genexpr> at 0x1022ef630>

      如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

    >>> next(g)
    0
    >>> next(g)
    1
    >>> next(g)
    4
    >>> next(g)
    9
    >>> next(g)
    16
    >>> next(g)
    25
    >>> next(g)
    36
    >>> next(g)
    49
    >>> next(g)
    64
    >>> next(g)
    81
    >>> next(g)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    StopIteration

      上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象

    >>> g = (x * x for x in range(10))
    >>> for n in g:
    ...     print(n)
    ...
    0
    1
    4
    9
    16
    25
    36
    49
    64
    81
    #案例1:边运行边运算在学术界称为惰性运算
    # a = [1,2,3,4,63]
    # a=(i*i if i>5 else i for i in a)
    #
    # print(next(a))
    # print(next(a))
    # print(next(a))
    # print(next(a))
    # print(a.__next__())
    #
    # for i in a:
    #     print(i)
    
    #案例2,复杂函数用法,生成器yield很好的保存了函数的中断状态
    #著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
    #1, 1, 2, 3, 5, 8, 13, 21, 34, ...
    def fib(max):
        n,a,b=0,0,1
        while n < max:
            yield b                 #将print变成yield就是生成器
            t = a+b
            a=b
            b=t
    
            n+=1
    
        return 'done'
    
    f = fib(10)
    print(f.__next__())
    print(f.__next__())
    print("hahahahahahahah")
    print(f.__next__())
    print(f.__next__())
    View Code

    还可通过yield实现在单线程的情况下实现并发运算的效果 

    import time
    def consumer(name):
        print("%s 准备吃包子啦!" %name)
        while True:
           baozi = yield
    
           print("包子[%s]来了,被[%s]吃了!" %(baozi,name))
    
    
    def producer(name):
        c = consumer('A')
        c2 = consumer('B')
        c.__next__()
        c2.__next__()
        print("老子开始准备做包子啦!")
        for i in range(10):
            time.sleep(1)
            print("做了2个包子!")
            c.send(i)
            c2.send(i)
    
    producer("alex")
    View Code

     3.迭代器

    我们已经知道,可以直接作用于for循环的数据类型有以下几种:

    一类是集合数据类型,如listtupledictsetstr等;

    一类是generator,包括生成器和带yield的generator function。

    这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

    可以使用isinstance()判断一个对象是否是Iterable对象:

    >>> from collections import Iterable
    >>> isinstance([], Iterable)
    True
    >>> isinstance({}, Iterable)
    True
    >>> isinstance('abc', Iterable)
    True
    >>> isinstance((x for x in range(10)), Iterable)
    True
    >>> isinstance(100, Iterable)
    False
    View Code

    而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

    *可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

    可以使用isinstance()判断一个对象是否是Iterator对象:

    >>> from collections import Iterator
    >>> isinstance((x for x in range(10)), Iterator)
    True
    >>> isinstance([], Iterator)
    False
    >>> isinstance({}, Iterator)
    False
    >>> isinstance('abc', Iterator)
    False
    View Code

    生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

    listdictstrIterable变成Iterator可以使用iter()函数:

    >>> isinstance(iter([]), Iterator)
    True
    >>> isinstance(iter('abc'), Iterator)
    True
    你可能会问,为什么list、dict、str等数据类型不是Iterator?
    
    这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。
    
    Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

    小结

    凡是可作用于for循环的对象都是Iterable类型;

    凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

    集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

    python3里的for循环的range()函数都是一个迭代器,python2里的range()就是个列表

    Python的for循环本质上就是通过不断调用next()函数实现的,例如:

    for x in [1, 2, 3, 4, 5]:
        pass
    # 首先获得Iterator对象:
    it = iter([1, 2, 3, 4, 5])
    # 循环:
    while True:
        try:
            # 获得下一个值:
            x = next(it)
        except StopIteration:
            # 遇到StopIteration就退出循环
            break

     

     

    3.软件目录结构规范

    为什么要设计好目录结构?

    "设计项目目录结构",就和"代码编码风格"一样,属于个人风格问题。对于这种风格上的规范,一直都存在两种态度:

    1. 一类同学认为,这种个人风格问题"无关紧要"。理由是能让程序work就好,风格问题根本不是问题。
    2. 另一类同学认为,规范化能更好的控制程序结构,让程序具有更高的可读性。

    我是比较偏向于后者的,因为我是前一类同学思想行为下的直接受害者。我曾经维护过一个非常不好读的项目,其实现的逻辑并不复杂,但是却耗费了我非常长的时间去理解它想表达的意思。从此我个人对于提高项目可读性、可维护性的要求就很高了。"项目目录结构"其实也是属于"可读性和可维护性"的范畴,我们设计一个层次清晰的目录结构,就是为了达到以下两点:

    1. 可读性高: 不熟悉这个项目的代码的人,一眼就能看懂目录结构,知道程序启动脚本是哪个,测试目录在哪儿,配置文件在哪儿等等。从而非常快速的了解这个项目。
    2. 可维护性高: 定义好组织规则后,维护者就能很明确地知道,新增的哪个文件和代码应该放在什么目录之下。这个好处是,随着时间的推移,代码/配置的规模增加,项目结构不会混乱,仍然能够组织良好。

    所以,我认为,保持一个层次清晰的目录结构是有必要的。更何况组织一个良好的工程目录,其实是一件很简单的事儿。

    目录组织方式

    关于如何组织一个较好的Python工程目录结构,已经有一些得到了共识的目录结构。在Stackoverflow的这个问题上,能看到大家对Python目录结构的讨论。

    这里面说的已经很好了,我也不打算重新造轮子列举各种不同的方式,这里面我说一下我的理解和体会。

    假设你的项目名为foo, 我比较建议的最方便快捷目录结构这样就足够了:

    Foo/
    |-- bin/
    |   |-- foo
    |
    |-- foo/
    |   |-- tests/
    |   |   |-- __init__.py
    |   |   |-- test_main.py
    |   |
    |   |-- __init__.py
    |   |-- main.py
    |
    |-- docs/
    |   |-- conf.py
    |   |-- abc.rst
    |
    |-- setup.py
    |-- requirements.txt
    |-- README

    简要解释一下:

    1. bin/: 存放项目的一些可执行文件,当然你可以起名script/之类的也行。
    2. foo/: 存放项目的所有源代码。(1) 源代码中的所有模块、包都应该放在此目录。不要置于顶层目录。(2) 其子目录tests/存放单元测试代码; (3) 程序的入口最好命名为main.py
    3. docs/: 存放一些文档。
    4. setup.py: 安装、部署、打包的脚本。
    5. requirements.txt: 存放软件依赖的外部Python包列表。
    6. README: 项目说明文件。

    除此之外,有一些方案给出了更加多的内容。比如LICENSE.txt,ChangeLog.txt文件等,我没有列在这里,因为这些东西主要是项目开源的时候需要用到。如果你想写一个开源软件,目录该如何组织,可以参考这篇文章

    下面,再简单讲一下我对这些目录的理解和个人要求吧。

    关于README的内容

    这个我觉得是每个项目都应该有的一个文件,目的是能简要描述该项目的信息,让读者快速了解这个项目。

    它需要说明以下几个事项:

    1. 软件定位,软件的基本功能。
    2. 运行代码的方法: 安装环境、启动命令等。
    3. 简要的使用说明。
    4. 代码目录结构说明,更详细点可以说明软件的基本原理。
    5. 常见问题说明。

    我觉得有以上几点是比较好的一个README。在软件开发初期,由于开发过程中以上内容可能不明确或者发生变化,并不是一定要在一开始就将所有信息都补全。但是在项目完结的时候,是需要撰写这样的一个文档的。

    可以参考Redis源码中Readme的写法,这里面简洁但是清晰的描述了Redis功能和源码结构。

    关于requirements.txt和setup.py

    setup.py

    一般来说,用setup.py来管理代码的打包、安装、部署问题。业界标准的写法是用Python流行的打包工具setuptools来管理这些事情。这种方式普遍应用于开源项目中。不过这里的核心思想不是用标准化的工具来解决这些问题,而是说,一个项目一定要有一个安装部署工具,能快速便捷的在一台新机器上将环境装好、代码部署好和将程序运行起来。

    这个我是踩过坑的。

    我刚开始接触Python写项目的时候,安装环境、部署代码、运行程序这个过程全是手动完成,遇到过以下问题:

    1. 安装环境时经常忘了最近又添加了一个新的Python包,结果一到线上运行,程序就出错了。
    2. Python包的版本依赖问题,有时候我们程序中使用的是一个版本的Python包,但是官方的已经是最新的包了,通过手动安装就可能装错了。
    3. 如果依赖的包很多的话,一个一个安装这些依赖是很费时的事情。
    4. 新同学开始写项目的时候,将程序跑起来非常麻烦,因为可能经常忘了要怎么安装各种依赖。

    setup.py可以将这些事情自动化起来,提高效率、减少出错的概率。"复杂的东西自动化,能自动化的东西一定要自动化。"是一个非常好的习惯。

    setuptools的文档比较庞大,刚接触的话,可能不太好找到切入点。学习技术的方式就是看他人是怎么用的,可以参考一下Python的一个Web框架,flask是如何写的: setup.py

    当然,简单点自己写个安装脚本(deploy.sh)替代setup.py也未尝不可。

    requirements.txt

    这个文件存在的目的是:

    1. 方便开发者维护软件的包依赖。将开发过程中新增的包添加进这个列表中,避免在setup.py安装依赖时漏掉软件包。
    2. 方便读者明确项目使用了哪些Python包。

    这个文件的格式是每一行包含一个包依赖的说明,通常是flask>=0.10这种格式,要求是这个格式能被pip识别,这样就可以简单的通过 pip install -r requirements.txt来把所有Python包依赖都装好了。具体格式说明: 点这里

    关于配置文件的使用方法

    注意,在上面的目录结构中,没有将conf.py放在源码目录下,而是放在docs/目录下。

    很多项目对配置文件的使用做法是:

    1. 配置文件写在一个或多个python文件中,比如此处的conf.py。
    2. 项目中哪个模块用到这个配置文件就直接通过import conf这种形式来在代码中使用配置。

    这种做法我不太赞同:

    1. 这让单元测试变得困难(因为模块内部依赖了外部配置)
    2. 另一方面配置文件作为用户控制程序的接口,应当可以由用户自由指定该文件的路径。
    3. 程序组件可复用性太差,因为这种贯穿所有模块的代码硬编码方式,使得大部分模块都依赖conf.py这个文件。

    所以,我认为配置的使用,更好的方式是,

    1. 模块的配置都是可以灵活配置的,不受外部配置文件的影响。
    2. 程序的配置也是可以灵活控制的。

    能够佐证这个思想的是,用过nginx和mysql的同学都知道,nginx、mysql这些程序都可以自由的指定用户配置。

    所以,不应当在代码中直接import conf来使用配置文件。上面目录结构中的conf.py,是给出的一个配置样例,不是在写死在程序中直接引用的配置文件。可以通过给main.py启动参数指定配置路径的方式来让程序读取配置内容。当然,这里的conf.py你可以换个类似的名字,比如settings.py。或者你也可以使用其他格式的内容来编写配置文件,比如settings.yaml之类的。

    4.作业:ATM项目开发

    作业需求:

    模拟实现一个ATM + 购物商城程序

    1. 额度 15000或自定义
    2. 实现购物商城,买东西加入 购物车,调用信用卡接口结账
    3. 可以提现,手续费5%
    4. 每月22号出账单,每月10号为还款日,过期未还,按欠款总额 万分之5 每日计息
    5. 支持多账户登录
    6. 支持账户间转账
    7. 记录每月日常消费流水
    8. 提供还款接口
    9. ATM记录操作日志 
    10. 提供管理接口,包括添加账户、用户额度,冻结账户等。。。
    11. 用户认证用装饰器
  • 相关阅读:
    2019-12-2 异常捕获
    类与类之间的6种关系
    关键字与理解
    this与super的语法比较
    单继承与多继承对比
    为什么javaBean要有get/set方法的设计
    多态在面向对象中的意义以及带来的好处
    十四、线程设计
    十三、窗口设计
    十二、SWING界面设计
  • 原文地址:https://www.cnblogs.com/linux-chenyang/p/6431622.html
Copyright © 2020-2023  润新知