基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
在N件物品取出若干件放在容量为W的背包里,每件物品的体积为W1,W2……Wn(Wi为整数),与之相对应的价值为P1,P2……Pn(Pi为整数)。求背包能够容纳的最大价值。
Input
第1行,2个整数,N和W中间用空格隔开。N为物品的数量,W为背包的容量。(1 <= N <= 100,1 <= W <= 10000) 第2 - N + 1行,每行2个整数,Wi和Pi,分别是物品的体积和物品的价值。(1 <= Wi, Pi <= 10000)
Output
输出可以容纳的最大价值。
Input示例
3 6 2 5 3 8 4 9
Output示例
14
#include<bits/stdc++.h>
#include<stdio.h>
#include<iostream>
#include<cmath>
#include<math.h>
#include<queue>
#include<set>
#include<map>
#include<iomanip>
#include<algorithm>
#include<stack>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
int n,W;
int w[105];
int p[105];
int dp[10005];
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif // ONLIN
scanf("%d%d",&n,&W);
for(int i=1;i<=n;i++)scanf("%d%d",&w[i],&p[i]);
for(int i=1;i<=n;i++)
{
for(int j=W;j>=0;j--)//为了防止一个物品被放入多次,须逆序进行
{
if(j>=w[i])
dp[j]=max(dp[j],dp[j-w[i]]+p[i]);
}
}
printf("%d
",dp[W]);
return 0;
}