• Kafka Consumer


    1、最简单的consumer使用(工作中不推荐使用)

    每次启动,都会重新收到一次。解决方法,业务处理成功后收到提交。

       private static  void helloWorld(){
            Properties prop = new Properties();
            prop.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"118.xx.xx.101:9092");
            prop.put("group.id","test");
            prop.put("enable.auto.commit","true");
            prop.put("auto.commit.interval.ms","1000");
            prop.put("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
            prop.put("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
    
            KafkaConsumer<String,String>  consumer = new KafkaConsumer<String, String>(prop);
            // 消费订阅哪个Topic或者几个Topic
            consumer.subscribe(Arrays.asList(TOPIC_NAME));
            while (true){
                ConsumerRecords<String,String> records = consumer.poll(Duration.ofMillis(1000));
                for( ConsumerRecord<String,String> record: records){
                    System.out.printf("partition - %d, offset - %d, key - %s, value - %s%n",
                            record.partition(),record.offset(), record.key(), record.value());
                }
            }
        }
    

      

    2、Consumer手动提交。

     /**
         * 手动提交offset
         */
        private static  void commitedOffset(){
            Properties prop = new Properties();
            prop.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"118.xx.xx.101:9092");
            prop.put("group.id","test");
            prop.put("enable.auto.commit","false");
            prop.put("auto.commit.interval.ms","1000");
            prop.put("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
            prop.put("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
    
            KafkaConsumer<String,String>  consumer = new KafkaConsumer<String, String>(prop);
            // 消费订阅哪个Topic或者几个Topic
            consumer.subscribe(Arrays.asList(TOPIC_NAME));
            while (true){
                ConsumerRecords<String,String> records = consumer.poll(Duration.ofMillis(1000));
                for( ConsumerRecord<String,String> record: records){
                    System.out.printf("partition - %d, offset - %d, key - %s, value - %s%n",
                            record.partition(),record.offset(), record.key(), record.value());
                    //把数据保存到数据库。
                    if(mockInsertDb()){
    
                    }
    
                }
                //如果手动通知offset提交
               // consumer.commitAsync();
            }
        }
    
        private static boolean mockInsertDb(){
            return  true;
        }
    

      这样就达到了,成功了就消费成功。失败了还能再次消费。

    三、consumer配置文件

           Properties prop = new Properties();
            prop.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"118.xx.xx.101:9092");
            // 对consumer进行分组
            prop.put("group.id","test");
            prop.put("enable.auto.commit","true");
            prop.put("auto.commit.interval.ms","1000");
            prop.put("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
            prop.put("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
    

      

    1、consumer分组注意事项

    1) 单个分区的消息只能由ConsumerGroup中的某个Conumer消费。
    consumer group中的consumer与partition是1:1或者 n:1的关系

    以下1:1关系

    以下红色的连线时禁止的。

     2) Consumer从Partition中消费消息时顺序,默认从头开始消费。

    3) 单个ConsumerGroup会消费所有Partition中的消息。如只有一个consumer,可以消费所有有Partition中的消息。

    四、Consumer单Partition提交offset

    poll后,在多线程的情况下,对每个partition进行处理。有的partition处理成功,有的partition处理失败,则不需要提交。假设三个partition,两个成功,一个失败,下一次就不需要重新检查这三个partition重新消费,针对失败的partition重新消费一次就好了。

      /**
         * 手动提交offset,并且手动控制partition
         */
        private static  void commitedOffsetWithPartition(){
            Properties prop = new Properties();
            prop.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"118.xx.xx.101:9092");
            prop.put("group.id","test");
            prop.put("enable.auto.commit","false");
            prop.put("auto.commit.interval.ms","1000");
            prop.put("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
            prop.put("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
    
            KafkaConsumer<String,String>  consumer = new KafkaConsumer<String, String>(prop);
            // 消费订阅哪个Topic或者几个Topic
            consumer.subscribe(Arrays.asList(TOPIC_NAME));
            while (true){
                ConsumerRecords<String,String> records = consumer.poll(Duration.ofMillis(10000));
                //每个partition单独获取
                for(TopicPartition partition : records.partitions()){
                    List<ConsumerRecord<String,String>> pRecord = records.records(partition);
                    for( ConsumerRecord<String,String> record: pRecord){
                        System.out.printf("partition - %d, offset - %d, key - %s, value - %s%n",
                                record.partition(),record.offset(), record.key(), record.value());
    
    
                    }
                    long lastOffset = pRecord.get(pRecord.size() - 1).offset();
                    //单个partition中的offset,并且进行提交
                    Map<TopicPartition, OffsetAndMetadata> offset = new HashMap<>();
                    offset.put(partition,new OffsetAndMetadata(lastOffset + 1));
                    //提交offset
                    consumer.commitSync(offset);
    
                    System.out.println("===============partition =" + partition + " end ==============");
                }
    
    
    
    
            }
        }

    这里的弊端时拉去后进行处理,只是减少了处理逻辑。

    五、 手动订阅某个或某些分区,并提交offset

    /**
         * 手动提交offset,并且手动控制partition.
         * 手动订阅某个或某些分区,并提交offset
         */
        private static  void commitedOffsetWithPartition(){
            Properties prop = new Properties();
            prop.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"118.xx.xx.101:9092");
            prop.put("group.id","test");
            prop.put("enable.auto.commit","false");
            prop.put("auto.commit.interval.ms","1000");
            prop.put("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
            prop.put("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
    
            KafkaConsumer<String,String>  consumer = new KafkaConsumer<String, String>(prop);
            // 消费订阅哪个Topic或者几个Topic
            consumer.subscribe(Arrays.asList(TOPIC_NAME));
            while (true){
                ConsumerRecords<String,String> records = consumer.poll(Duration.ofMillis(10000));
                //每个partition单独获取
                for(TopicPartition partition : records.partitions()){
                    List<ConsumerRecord<String,String>> pRecord = records.records(partition);
                    for( ConsumerRecord<String,String> record: pRecord){
                        System.out.printf("partition - %d, offset - %d, key - %s, value - %s%n",
                                record.partition(),record.offset(), record.key(), record.value());
                    }
                    long lastOffset = pRecord.get(pRecord.size() - 1).offset();
                    //单个partition中的offset,并且进行提交
                    Map<TopicPartition, OffsetAndMetadata> offset = new HashMap<>();
                    offset.put(partition,new OffsetAndMetadata(lastOffset + 1));
                    //提交offset
                    consumer.commitSync(offset);
    
                    System.out.println("===============partition =" + partition + " end ==============");
                }
            }
        }
    

      

    六、Consumer多线程并发处理

    方式1:每一个线程单独创建一个KafkaConsumer,用于保证线程安全

     

     代码如下:

    public class ConsumerThreadSample {
        private final static String TOPIC_NAME="test5";
    
        /*
            这种类型是经典模式,每一个线程单独创建一个KafkaConsumer,用于保证线程安全
         */
        public static void main(String[] args) throws InterruptedException {
            KafkaConsumerRunner r1 = new KafkaConsumerRunner();
            Thread t1 = new Thread(r1);
    
            t1.start();
    
            Thread.sleep(15000);
    
            r1.shutdown();
        }
    
        public static class KafkaConsumerRunner implements Runnable{
            private final AtomicBoolean closed = new AtomicBoolean(false);
            private final KafkaConsumer consumer;
    
            public KafkaConsumerRunner() {
                Properties props = new Properties();
                props.put("bootstrap.servers", "118.xx.xx.101:9092");
                props.put("group.id", "test");
                props.put("enable.auto.commit", "false");
                props.put("auto.commit.interval.ms", "1000");
                props.put("session.timeout.ms", "30000");
                props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
                props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
    
                consumer = new KafkaConsumer<>(props);
    
                TopicPartition p0 = new TopicPartition(TOPIC_NAME, 0);
                TopicPartition p1 = new TopicPartition(TOPIC_NAME, 1);
    
                consumer.assign(Arrays.asList(p0,p1));
            }
    
    
            public void run() {
                try {
                    while(!closed.get()) {
                        //处理消息
                        ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(10000));
    
                        for (TopicPartition partition : records.partitions()) {
                            List<ConsumerRecord<String, String>> pRecord = records.records(partition);
                            // 处理每个分区的消息
                            for (ConsumerRecord<String, String> record : pRecord) {
                                System.out.printf("patition = %d , offset = %d, key = %s, value = %s%n",
                                        record.partition(),record.offset(), record.key(), record.value());
                            }
    
                            // 返回去告诉kafka新的offset
                            long lastOffset = pRecord.get(pRecord.size() - 1).offset();
                            // 注意加1
                            consumer.commitSync(Collections.singletonMap(partition, new OffsetAndMetadata(lastOffset + 1)));
                        }
    
                    }
                }catch(WakeupException e) {
                    if(!closed.get()) {
                        throw e;
                    }
                }finally {
                    consumer.close();
                }
            }
    
            public void shutdown() {
                closed.set(true);
                consumer.wakeup();
            }
        }
    
    }
    

      

    方式2:使用线程池

    无法记录offset,不能再次消费失败的。

    代码如下:

    public class ConsumerRecordThreadSample {
        private final static String TOPIC_NAME = "test5";
    
        public static void main(String[] args) throws InterruptedException {
            String brokerList = "118.xx.xx.101:9092";
            String groupId = "test";
            int workerNum = 5;
    
            CunsumerExecutor consumers = new CunsumerExecutor(brokerList, groupId, TOPIC_NAME);
            consumers.execute(workerNum);
    
            Thread.sleep(1000000);
    
            consumers.shutdown();
    
        }
    
        // Consumer处理
        public static class CunsumerExecutor{
            private final KafkaConsumer<String, String> consumer;
            private ExecutorService executors;
    
            public CunsumerExecutor(String brokerList, String groupId, String topic) {
                Properties props = new Properties();
                props.put("bootstrap.servers", brokerList);
                props.put("group.id", groupId);
                props.put("enable.auto.commit", "true");
                props.put("auto.commit.interval.ms", "1000");
                props.put("session.timeout.ms", "30000");
                props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
                props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
                consumer = new KafkaConsumer<>(props);
                consumer.subscribe(Arrays.asList(topic));
            }
    
            public void execute(int workerNum) {
                executors = new ThreadPoolExecutor(workerNum, workerNum, 0L, TimeUnit.MILLISECONDS,
                        new ArrayBlockingQueue<>(1000), new ThreadPoolExecutor.CallerRunsPolicy());
    
                while (true) {
                    ConsumerRecords<String, String> records = consumer.poll(200);
                    for (final ConsumerRecord record : records) {
                        executors.submit(new ConsumerRecordWorker(record));
                    }
                }
            }
    
            public void shutdown() {
                if (consumer != null) {
                    consumer.close();
                }
                if (executors != null) {
                    executors.shutdown();
                }
                try {
                    if (!executors.awaitTermination(10, TimeUnit.SECONDS)) {
                        System.out.println("Timeout.... Ignore for this case");
                    }
                } catch (InterruptedException ignored) {
                    System.out.println("Other thread interrupted this shutdown, ignore for this case.");
                    Thread.currentThread().interrupt();
                }
            }
    
    
        }
    
        // 记录处理
        public static class ConsumerRecordWorker implements Runnable {
    
            private ConsumerRecord<String, String> record;
    
            public ConsumerRecordWorker(ConsumerRecord record) {
                this.record = record;
            }
    
            @Override
            public void run() {
                // 假如说数据入库操作
                System.out.println("Thread - "+ Thread.currentThread().getName());
                System.err.printf("patition = %d , offset = %d, key = %s, value = %s%n",
                        record.partition(), record.offset(), record.key(), record.value());
            }
    
        }
    }
    

      

     七、手动控制起始位置

    //动指定offset的起始位置
    consumer.seek(p0, 700);

      /**
         * 手动指定offset的起始位置,以及手动提交offset
         */
        private static  void controllOffset(){
            Properties prop = new Properties();
            prop.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"118.xx.xx.101:9092");
            prop.put("group.id","test");
            prop.put("enable.auto.commit","false");
            prop.put("auto.commit.interval.ms","1000");
            prop.put("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
            prop.put("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
    
            KafkaConsumer<String,String>  consumer = new KafkaConsumer<String, String>(prop);
            // 创建了两个partition,分别为test5-0,test5-1, test5为topic name
            TopicPartition p0 = new TopicPartition(TOPIC_NAME, 0);
    
    
            // 消费订阅哪个Topic或者几个Topic
            //consumer.subscribe(Arrays.asList(TOPIC_NAME));
            //消费订阅某个topic的某个分区
            consumer.assign(Arrays.asList(p0));
    
            while (true){
                //动指定offset的起始位置
                consumer.seek(p0, 700);
                ConsumerRecords<String,String> records = consumer.poll(Duration.ofMillis(10000));
                //每个partition单独获取
                for(TopicPartition partition : records.partitions()){
                    List<ConsumerRecord<String,String>> pRecord = records.records(partition);
                    for( ConsumerRecord<String,String> record: pRecord){
                        System.out.printf("partition - %d, offset - %d, key - %s, value - %s%n",
                                record.partition(),record.offset(), record.key(), record.value());
    
    
                    }
                    long lastOffset = pRecord.get(pRecord.size() - 1).offset();
                    //单个partition中的offset,并且进行提交
                    Map<TopicPartition, OffsetAndMetadata> offset = new HashMap<>();
                    offset.put(partition,new OffsetAndMetadata(lastOffset + 1));
                    //提交offset
                    consumer.commitSync(offset);
    
                    System.out.println("===============partition =" + partition + " end ==============");
                }
    
    
    
    
            }
        }
    

      

    作者:Work Hard Work Smart
    出处:http://www.cnblogs.com/linlf03/
    欢迎任何形式的转载,未经作者同意,请保留此段声明!

  • 相关阅读:
    解决:IIS APPPOOLDefaultAppPool 登录失败的问题
    C#操作txt文件并清空添加操作
    linux修改yum本地源的方法
    CentOS防火墙开启、关闭与开放指定端口
    CentOS配置SSH远程连接
    判断js对象是否拥有某一个属性的js代码
    bash脚本输入密码不回显问题的解决方法
    js控制表单操作的常用代码小结
    绝版Node--Sequlize搭建服务(Node全栈之路 二)
    绝版Node--Sequlize搭建服务(Node全栈之路)
  • 原文地址:https://www.cnblogs.com/linlf03/p/15256993.html
Copyright © 2020-2023  润新知