• 机器学习基石-笔记1


    1.2 What is Machine Learning

    ▲ 什么是机器学习?

    在搞清这个问题之前,先要搞清什么是学习。

    学习可以是人或者动物通过观察思考获得一定的技巧过程。

    而机器学习与之类似,是计算机通过数据计算获得一定技巧的过程。

    注意这一对比,学习是通过观察而机器学习是通过数据(是计算机的一种观察)。

    ▲ 那么紧接着就是要解决上述中出现的一个新的名词"技巧"(skill)。

    什么是技巧呢?技巧是一些能力表现的更加出色。

    机器学习中的技巧如预测(prediction)、识别(recognition)。

    来一个例子:从股票的数据中获得收益增多的这种技巧,这就是一种机器学习的例子。

    那既然人也可以通过观察获得一个技巧,为什么还需要机器学习呢?

    这就是为什么需要机器学习,简单来说,就是两大原因:

    一些数据或者信息,人来无法获取,可能是一些人无法识别的事物,或是数据信息量特别大;

    另一个原因是人的处理满足不了需求,比如:定义很多很多的规则满足物体识别或者其他需求;在短时间内通过大量信息做出判断等等。

    上面说的是为什么使用机器学习,那么什么情况下使用机器学习呢?是不是所有的情况都使用机器学习呢?

    这里给出了三个ML(机器学习的英文缩写)的关键要素:

    1、存在一个模式或者说表现可以让我们对它进行改进提高;

    2、规则并不容易那么定义;

    3、需要有数据。

    1.3 Applications of Machine Learning

    机器学习的应用。

    1.5 Machine Learning and Other Fields

    机器学习与其他各个领域的关系。

    1.5.1 ML VS DM (Data Mining)

    机器学习与数据挖掘者叫知识发现(KDD Knowledge Discovery in Dataset)。

    上一节中已经给出了机器学习的概念,因此只介绍下数据挖掘的概念,就是从大量的数据中找出有用的信息。

    从定义出发,我们可以将两者之间的关系分为3种。

    1. 两者是一致的:能够找出的有用信息就是我们要求得的近似目标函数的假设。
    2. 两者是互助的:能够找出的有用信息就能帮助我们找出近似的假设,反之也可行。
    3. 传统的数据挖掘更关注与从大量的数据中的计算问题。

    总的来时,两者密不可分。

    1.5.2 M L VS AI (artificial intelligence)

    机器学习与人工智能。

    人工智能的大概概念就是电脑能够表现出一些智慧行为。

    从定义可以得到,机器学习是实现人工智能的一种方式。

    1.5.3 ML VS statistic

    机器学习与统计。

    统计也需要通过数据,来做一个未知的推论。

    因此统计是一种实现机器学习的方法。

    传统的统计学习更关注与数学公式,而非计算本身。

  • 相关阅读:
    ConvertUtils的理解
    mysql存储过程 详细注释
    线程方法
    集合的方法
    StringStringBufferStringBuilder
    Java基础知识点1
    Java基础知识点
    索引+sql优化
    Oracle数据库02
    Oracle数据库01
  • 原文地址:https://www.cnblogs.com/linkmust/p/11038949.html
Copyright © 2020-2023  润新知