• ng机器学习视频笔记(十五) ——大数据机器学习(随机梯度下降与map reduce)


    ng机器学习视频笔记(十五)

    ——大数据机器学习(随机梯度下降与map reduce)

     

    (转载请附上本文链接——linhxx)

     

    一、概述

    1、存在问题

             当样本集非常大的时候,例如m=1亿,此时如果使用原来的梯度下降算法(也成为批量梯度下降算法(batch gradient descent),下同),则速度会非常慢,因为其每次遍历整个数据集,才完成1次的梯度下降的优化。即计算机执行1亿次的计算,仅仅完成1次的优化,因此速度非常慢。

    2、数据量考虑

             在使用全量数据,而不是摘取一部分数据来做机器学习,首先需要考虑的是算法的学习曲线,如果学习曲线中训练代价函数和cv代价函数差距很大,未收敛,则可以考虑加大样本容量的使用。否则应该先考虑优化算法,加大数据量未必一定有用。

             下图左边是可以加大数据量解决的问题,右边是加大数据量也无法解决的问题。

     

    3、说明

             本文下面用到的方法,都是在当数据量非常大(如1亿以上)的时候,才会考虑的方法,当数据量不大时,使用批量梯度下降最好,用下面的方法反而会有问题。

    二、随机梯度下降

             为了解决批量梯度下降收敛速度慢的问题,有了随机梯度下降算法(stochastic gradient descent)。

    1、公式

             随机梯度下降,本质上就是把批量梯度下降中,不是把整个数据集都计算完取平均值后,再调整对应的θ,而是对于每个样本,计算完该样本后,就直接更新θ。

             如下图所示:

     

             这里的重复次数,实际上数据量很大的时候,1次遍历整个数据集即可。如果想要多次优化,理论上1~10次即可,不需要太多次。

             另外,随机梯度下降算法,使用之前,要打散整个数据集,这样效果更好。

    2、原理

             对于每个样本,计算出来的θ,实际上是一个小范围内的最优梯度。所以用这个来更新,不会直接逼近最优值,而是逼近区域的最优值,因此可能会非常的波动,蜿蜒曲折的靠近最优值,就像上图的粉色的线那样。如上图粉色的线。

             而批量梯度下降,由于每次都是用整个样本最优值的均值,因此确保了样本能够直接朝着全局最优值的范围优化。如上图红色的线。

    三、随机梯度下降的优化

             随机梯度下降,也需要考虑到α,以及考虑算法是否正确执行。随机梯度算法正确的衡量,通常是每1000次优化,取一次误差的均值,进而画出均值-优化次数图,通过图像是否往0方向收敛,来判断算法是否正确。

             之前学过,α越小,其相当于往梯度迈进的步子越小,即优化的更精确,但是收敛速度会比较慢,如下面的左上方的图。

             由于随机梯度,每次的优化是局部的优化,因而会有抖动,如果把1000换成5000,图像会更平缓,但是这样算法的改变在图上表现的也不那么明显,因为是5000次的均值。如下面右上方的图。

             如果发现图像一直上下波动,没有收敛也没有发散,可能是因为均值的基数太小,此时用5000来做均值,有可能会解决此问题。但是也有可能本身算法问题,或者数据等的问题导致的,这样的就无法解决。如下图左下角的图。

             另外,如果α取的太大,图像发散,需要减小α,如下图右下角的图。

     

             动态α:

             为了保证抖动更少,还可以通过动态取α的值来做到,令α=C/(D+迭代次数),C、D是两个常数。这样随着迭代的深入,α越来越小,则会越来越精确,而尽量避免越过最低值导致波动的现象。

             但是,这样带来的问题,就是原来需要一个α作为参数,现在需要C、D两个参数,这样需要设置的参数更多,算法更加复杂。

    四、微型批量梯度下降

             有一种梯度下降,介于批量梯度下降和随机梯度下降之间,叫做微型梯度下降(Mini batch gradient descent),其做法是,既不像批量梯度下降那样要遍历整个样本才做一次优化更新,也不像随机梯度下降那样每个样本更新一次,而是设定一个参数b,每遍历b个样本做一次优化更新。b通常取2~100。如下图所示:

     

     

    五、在线学习

    1、过程

             当无法一次性获取整个数据集,或者需要不断的优化时,则要用到在线学习(online learning)技术。

             在线学习,实际上就是拥有无限输入的随机梯度下降。随机梯度下降是遍历整个数据集,对于每个样本进行一次计算和优化;而在线学习没有指定的样本集,是每次来一个新的样本,就做一次优化。

             这里输入的是样本的特征,并将是否被用户选择作为输出,可以用logistic回归的方式来进行学习。

             如下:

     

    2、主要业务场景

             例如新闻网站,需要根据用户的点击,在用户下次登陆时展示不同的信息。这样就可以将展示出来的新闻作为样本,用户点击的话则判断为1,不点击则判断为0。对于被判断为1的新闻,拥有这种类型的特征的新闻,下次展示的概率都会更大。

    六、Map-reduce

             当数据量非常大,而且有多台电脑,或者计算机集群时,可以并行的来解决问题,运用map-reduce的思想来处理。

             map-reduce,实际上是将一个庞大的数据集,根据当前情况进行分片,把不同的片分给不同的处理器处理,每片再把处理结果都传给同一个中央处理器,进行汇总计算。

             例如现在有400个数据(这里为了举例说明,实际上400个数据用不到map-reduce,而4亿的数据则可以考虑用map-reduce),4台计算机,要进行线性回归的机器学习,采用批量梯度下降的方式进行优化。

             批量梯度下降每次优化,需要累加所有的样本的求偏导的计算结果,则可以把400个数据分成4个100个的数据集,同时给4台机器处理。每台机器处理完,都将结果传给一个中央处理器。中央处理器在把这些结果求和,求均值,乘以α,做减法,触发下一次的优化。

             这样,当不考虑网络延迟等问题时,可以达到原来速度的4倍。

             如下图所示:

     

             机器如下图所示:

     

             另外,现在的很多计算机是多核的,如果一个计算机有四核,则也可以进行map-reduce,而且这样还省去了网络延时,效果更好。

     

             另外,有的函数库,会自动的去调用计算机的多核来处理,则就不需要考虑map-reduce了。

    七、总结

             这一章主要提到大数据情况下的处理方式,数据量非常大时,很多平时很好用的算法会慢慢无法适应,这也是上面提到的一些改版的梯度下降的起源。对于数据量小时,如果使用随机梯度下降或者微型梯度下降,反而无法很好的收敛,因为数据量不足会导致训练次数不够。

             另外,对于map-reduce,实际上是用到并行的思想来处理问题,要使用这个,首先要确定数据量足够大,有必要使用;此外,也要保证对应的机器学习算法,里面的优化过程(或部分子过程)可以拆成几个部分给各个机器同时处理,而且是耗时的部分进行拆解处理,这样才能最大的提示计算机是效用。

    ——written by linhxx

    更多最新文章,欢迎关注微信公众号“决胜机器学习”,或扫描右边二维码。

    博客园这边,我会定期批量发布文章,如果想要实时看到最新的文章,欢迎关注微信公众号"决胜机器学习",里面有我最新的文章。linhxx
  • 相关阅读:
    x64 平台开发 Mapxtreme 编译错误
    hdu 4305 Lightning
    Ural 1627 Join(生成树计数)
    poj 2104 Kth Number(可持久化线段树)
    ural 1651 Shortest Subchain
    hdu 4351 Digital root
    hdu 3221 Bruteforce Algorithm
    poj 2892 Tunnel Warfare (Splay Tree instead of Segment Tree)
    hdu 4031 Attack(BIT)
    LightOJ 1277 Looking for a Subsequence
  • 原文地址:https://www.cnblogs.com/linhxx/p/8412842.html
Copyright © 2020-2023  润新知