• oom killer


    Linux系统内存管理中存在着一个称之为OOM killer(Out-Of-Memory killer)的机制,该机制主要用于内存监控,监控进程的内存使用量,当系统的内存耗尽时,其将根据算法选择性地kill了部分进程。本文分析的内存溢出保护机制,也就是OOM killer机制了。

    回到伙伴管理算法中涉及的一函数__alloc_pages_nodemask(),其里面调用的__alloc_pages_slowpath()并未展开深入,而内存溢出保护机制则在此函数中。

    先行查看一下__alloc_pages_slowpath()的实现:

    【file:/ mm/page_alloc.h】
    static inline struct page *
    __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
        struct zonelist *zonelist, enum zone_type high_zoneidx,
        nodemask_t *nodemask, struct zone *preferred_zone,
        int migratetype)
    {
        const gfp_t wait = gfp_mask & __GFP_WAIT;
        struct page *page = NULL;
        int alloc_flags;
        unsigned long pages_reclaimed = 0;
        unsigned long did_some_progress;
        bool sync_migration = false;
        bool deferred_compaction = false;
        bool contended_compaction = false;
     
        /*
         * In the slowpath, we sanity check order to avoid ever trying to
         * reclaim >= MAX_ORDER areas which will never succeed. Callers may
         * be using allocators in order of preference for an area that is
         * too large.
         */
        if (order >= MAX_ORDER) {
            WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
            return NULL;
        }
     
        /*
         * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
         * __GFP_NOWARN set) should not cause reclaim since the subsystem
         * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
         * using a larger set of nodes after it has established that the
         * allowed per node queues are empty and that nodes are
         * over allocated.
         */
        if (IS_ENABLED(CONFIG_NUMA) &&
            (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
            goto nopage;
     
    restart:
        if (!(gfp_mask & __GFP_NO_KSWAPD))
            wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
     
        /*
         * OK, we're below the kswapd watermark and have kicked background
         * reclaim. Now things get more complex, so set up alloc_flags according
         * to how we want to proceed.
         */
        alloc_flags = gfp_to_alloc_flags(gfp_mask);
     
        /*
         * Find the true preferred zone if the allocation is unconstrained by
         * cpusets.
         */
        if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
            first_zones_zonelist(zonelist, high_zoneidx, NULL,
                        &preferred_zone);
     
    rebalance:
        /* This is the last chance, in general, before the goto nopage. */
        page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
                high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
                preferred_zone, migratetype);
        if (page)
            goto got_pg;
     
        /* Allocate without watermarks if the context allows */
        if (alloc_flags & ALLOC_NO_WATERMARKS) {
            /*
             * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
             * the allocation is high priority and these type of
             * allocations are system rather than user orientated
             */
            zonelist = node_zonelist(numa_node_id(), gfp_mask);
     
            page = __alloc_pages_high_priority(gfp_mask, order,
                    zonelist, high_zoneidx, nodemask,
                    preferred_zone, migratetype);
            if (page) {
                goto got_pg;
            }
        }
     
        /* Atomic allocations - we can't balance anything */
        if (!wait) {
            /*
             * All existing users of the deprecated __GFP_NOFAIL are
             * blockable, so warn of any new users that actually allow this
             * type of allocation to fail.
             */
            WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
            goto nopage;
        }
     
        /* Avoid recursion of direct reclaim */
        if (current->flags & PF_MEMALLOC)
            goto nopage;
     
        /* Avoid allocations with no watermarks from looping endlessly */
        if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
            goto nopage;
     
        /*
         * Try direct compaction. The first pass is asynchronous. Subsequent
         * attempts after direct reclaim are synchronous
         */
        page = __alloc_pages_direct_compact(gfp_mask, order,
                        zonelist, high_zoneidx,
                        nodemask,
                        alloc_flags, preferred_zone,
                        migratetype, sync_migration,
                        &contended_compaction,
                        &deferred_compaction,
                        &did_some_progress);
        if (page)
            goto got_pg;
        sync_migration = true;
     
        /*
         * If compaction is deferred for high-order allocations, it is because
         * sync compaction recently failed. In this is the case and the caller
         * requested a movable allocation that does not heavily disrupt the
         * system then fail the allocation instead of entering direct reclaim.
         */
        if ((deferred_compaction || contended_compaction) &&
                            (gfp_mask & __GFP_NO_KSWAPD))
            goto nopage;
     
        /* Try direct reclaim and then allocating */
        page = __alloc_pages_direct_reclaim(gfp_mask, order,
                        zonelist, high_zoneidx,
                        nodemask,
                        alloc_flags, preferred_zone,
                        migratetype, &did_some_progress);
        if (page)
            goto got_pg;
     
        /*
         * If we failed to make any progress reclaiming, then we are
         * running out of options and have to consider going OOM
         */
        if (!did_some_progress) {
            if (oom_gfp_allowed(gfp_mask)) {
                if (oom_killer_disabled)
                    goto nopage;
                /* Coredumps can quickly deplete all memory reserves */
                if ((current->flags & PF_DUMPCORE) &&
                    !(gfp_mask & __GFP_NOFAIL))
                    goto nopage;
                page = __alloc_pages_may_oom(gfp_mask, order,
                        zonelist, high_zoneidx,
                        nodemask, preferred_zone,
                        migratetype);
                if (page)
                    goto got_pg;
     
                if (!(gfp_mask & __GFP_NOFAIL)) {
                    /*
                     * The oom killer is not called for high-order
                     * allocations that may fail, so if no progress
                     * is being made, there are no other options and
                     * retrying is unlikely to help.
                     */
                    if (order > PAGE_ALLOC_COSTLY_ORDER)
                        goto nopage;
                    /*
                     * The oom killer is not called for lowmem
                     * allocations to prevent needlessly killing
                     * innocent tasks.
                     */
                    if (high_zoneidx < ZONE_NORMAL)
                        goto nopage;
                }
     
                goto restart;
            }
        }
     
        /* Check if we should retry the allocation */
        pages_reclaimed += did_some_progress;
        if (should_alloc_retry(gfp_mask, order, did_some_progress,
                            pages_reclaimed)) {
            /* Wait for some write requests to complete then retry */
            wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
            goto rebalance;
        } else {
            /*
             * High-order allocations do not necessarily loop after
             * direct reclaim and reclaim/compaction depends on compaction
             * being called after reclaim so call directly if necessary
             */
            page = __alloc_pages_direct_compact(gfp_mask, order,
                        zonelist, high_zoneidx,
                        nodemask,
                        alloc_flags, preferred_zone,
                        migratetype, sync_migration,
                        &contended_compaction,
                        &deferred_compaction,
                        &did_some_progress);
            if (page)
                goto got_pg;
        }
     
    nopage:
        warn_alloc_failed(gfp_mask, order, NULL);
        return page;
    got_pg:
        if (kmemcheck_enabled)
            kmemcheck_pagealloc_alloc(page, order, gfp_mask);
     
        return page;
    }
    

    该函数首先判断调用者是否禁止唤醒kswapd线程,若不做禁止则唤醒线程进行内存回收工作,然后通过gfp_to_alloc_flags()对内存分配标识进行调整,而后再次调用get_page_from_freelist()尝试分配,如果分配到则退出。否则继续尝试内存分配,继续尝试分配则先行判断是否设置了ALLOC_NO_WATERMARKS标识,如果设置了,则将忽略watermark,调用__alloc_pages_high_priority()进行分配。

    __alloc_pages_high_priority()函数实现:

    【file:/ mm/page_alloc.h】
    /*
     * This is called in the allocator slow-path if the allocation request is of
     * sufficient urgency to ignore watermarks and take other desperate measures
     */
    static inline struct page *
    __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
        struct zonelist *zonelist, enum zone_type high_zoneidx,
        nodemask_t *nodemask, struct zone *preferred_zone,
        int migratetype)
    {
        struct page *page;
     
        do {
            page = get_page_from_freelist(gfp_mask, nodemask, order,
                zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
                preferred_zone, migratetype);
     
            if (!page && gfp_mask & __GFP_NOFAIL)
                wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
        } while (!page && (gfp_mask & __GFP_NOFAIL));
     
        return page;
    }
    

    可以看到该函数根据分配标识__GFP_NOFAIL不断地调用get_page_from_freelist()循环尝试去获得内存。

    接着回到__alloc_pages_slowpath()中,其从__alloc_pages_high_priority()退出后继而判断是否设置了__GFP_WAIT标识,如果设置则表示内存分配运行休眠,否则直接以分配内存失败而退出。接着将会调用__alloc_pages_direct_compact()和__alloc_pages_direct_reclaim()尝试回收内存并尝试分配。基于上面的多种尝试内存分配仍然失败的情况,将会调用__alloc_pages_may_oom()触发OOM killer机制。OOM killer将进程kill后会重新再次尝试内存分配,最后则是分配失败或分配成功的收尾处理。

    __alloc_pages_slowpath()暂且分析至此,回到本文重点函数__alloc_pages_may_oom()中进一步进行分析。

    【file:/ mm/page_alloc.h】
    static inline struct page *
    __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
        struct zonelist *zonelist, enum zone_type high_zoneidx,
        nodemask_t *nodemask, struct zone *preferred_zone,
        int migratetype)
    {
        struct page *page;
     
        /* Acquire the OOM killer lock for the zones in zonelist */
        if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
            schedule_timeout_uninterruptible(1);
            return NULL;
        }
     
        /*
         * Go through the zonelist yet one more time, keep very high watermark
         * here, this is only to catch a parallel oom killing, we must fail if
         * we're still under heavy pressure.
         */
        page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
            order, zonelist, high_zoneidx,
            ALLOC_WMARK_HIGH|ALLOC_CPUSET,
            preferred_zone, migratetype);
        if (page)
            goto out;
     
        if (!(gfp_mask & __GFP_NOFAIL)) {
            /* The OOM killer will not help higher order allocs */
            if (order > PAGE_ALLOC_COSTLY_ORDER)
                goto out;
            /* The OOM killer does not needlessly kill tasks for lowmem */
            if (high_zoneidx < ZONE_NORMAL)
                goto out;
            /*
             * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
             * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
             * The caller should handle page allocation failure by itself if
             * it specifies __GFP_THISNODE.
             * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
             */
            if (gfp_mask & __GFP_THISNODE)
                goto out;
        }
        /* Exhausted what can be done so it's blamo time */
        out_of_memory(zonelist, gfp_mask, order, nodemask, false);
     
    out:
        clear_zonelist_oom(zonelist, gfp_mask);
        return page;
    }
    

    该函数首先通过try_set_zonelist_oom()判断OOM killer是否已经在其他核进行killing操作,如果没有的情况下将会在try_set_zonelist_oom()内部进行锁操作,确保只有一个核执行killing的操作。继而调用get_page_from_freelist()在高watermark的情况下尝试再次获取内存,不过这里注定会失败。接着就是调用到了关键函数out_of_memory()。最后函数退出时将会调用clear_zonelist_oom()清除掉try_set_zonelist_oom()里面的锁操作。

    着重分析一下out_of_memory():

    【file:/ mm/oom_kill.c】
    /**
     * out_of_memory - kill the "best" process when we run out of memory
     * @zonelist: zonelist pointer
     * @gfp_mask: memory allocation flags
     * @order: amount of memory being requested as a power of 2
     * @nodemask: nodemask passed to page allocator
     * @force_kill: true if a task must be killed, even if others are exiting
     *
     * If we run out of memory, we have the choice between either
     * killing a random task (bad), letting the system crash (worse)
     * OR try to be smart about which process to kill. Note that we
     * don't have to be perfect here, we just have to be good.
     */
    void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
            int order, nodemask_t *nodemask, bool force_kill)
    {
        const nodemask_t *mpol_mask;
        struct task_struct *p;
        unsigned long totalpages;
        unsigned long freed = 0;
        unsigned int uninitialized_var(points);
        enum oom_constraint constraint = CONSTRAINT_NONE;
        int killed = 0;
     
        blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
        if (freed > 0)
            /* Got some memory back in the last second. */
            return;
     
        /*
         * If current has a pending SIGKILL or is exiting, then automatically
         * select it. The goal is to allow it to allocate so that it may
         * quickly exit and free its memory.
         */
        if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
            set_thread_flag(TIF_MEMDIE);
            return;
        }
     
        /*
         * Check if there were limitations on the allocation (only relevant for
         * NUMA) that may require different handling.
         */
        constraint = constrained_alloc(zonelist, gfp_mask, nodemask,
                            &totalpages);
        mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL;
        check_panic_on_oom(constraint, gfp_mask, order, mpol_mask);
     
        if (sysctl_oom_kill_allocating_task && current->mm &&
            !oom_unkillable_task(current, NULL, nodemask) &&
            current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
            get_task_struct(current);
            oom_kill_process(current, gfp_mask, order, 0, totalpages, NULL,
                     nodemask,
                     "Out of memory (oom_kill_allocating_task)");
            goto out;
        }
     
        p = select_bad_process(&points, totalpages, mpol_mask, force_kill);
        /* Found nothing?!?! Either we hang forever, or we panic. */
        if (!p) {
            dump_header(NULL, gfp_mask, order, NULL, mpol_mask);
            panic("Out of memory and no killable processes...
    ");
        }
        if (p != (void *)-1UL) {
            oom_kill_process(p, gfp_mask, order, points, totalpages, NULL,
                     nodemask, "Out of memory");
            killed = 1;
        }
    out:
        /*
         * Give the killed threads a good chance of exiting before trying to
         * allocate memory again.
         */
        if (killed)
            schedule_timeout_killable(1);
    }
    

    该函数首先调用blocking_notifier_call_chain()进行OOM的内核通知链回调处理;接着的if (fatal_signal_pending(current) || current->flags & PF_EXITING)判断则是用于检查是否有SIGKILL信号挂起或者正在信号处理中,如果有则退出;再接着通过constrained_alloc()检查内存分配限制以及check_panic_on_oom()检查是否报linux内核panic;继而判断sysctl_oom_kill_allocating_task变量及进程检查,如果符合条件判断,则将当前分配的内存kill掉;否则最后,将通过select_bad_process()选出最佳的进程,进而调用oom_kill_process()对其进行kill操作。

    最后分析一下select_bad_process()和oom_kill_process(),其中select_bad_process()的实现:

    【file:/ mm/oom_kill.c】
    /*
     * Simple selection loop. We chose the process with the highest
     * number of 'points'. Returns -1 on scan abort.
     *
     * (not docbooked, we don't want this one cluttering up the manual)
     */
    static struct task_struct *select_bad_process(unsigned int *ppoints,
            unsigned long totalpages, const nodemask_t *nodemask,
            bool force_kill)
    {
        struct task_struct *g, *p;
        struct task_struct *chosen = NULL;
        unsigned long chosen_points = 0;
     
        rcu_read_lock();
        for_each_process_thread(g, p) {
            unsigned int points;
     
            switch (oom_scan_process_thread(p, totalpages, nodemask,
                            force_kill)) {
            case OOM_SCAN_SELECT:
                chosen = p;
                chosen_points = ULONG_MAX;
                /* fall through */
            case OOM_SCAN_CONTINUE:
                continue;
            case OOM_SCAN_ABORT:
                rcu_read_unlock();
                return (struct task_struct *)(-1UL);
            case OOM_SCAN_OK:
                break;
            };
            points = oom_badness(p, NULL, nodemask, totalpages);
            if (!points || points < chosen_points)
                continue;
            /* Prefer thread group leaders for display purposes */
            if (points == chosen_points && thread_group_leader(chosen))
                continue;
     
            chosen = p;
            chosen_points = points;
        }
        if (chosen)
            get_task_struct(chosen);
        rcu_read_unlock();
     
        *ppoints = chosen_points * 1000 / totalpages;
        return chosen;
    }
    

    此函数通过for_each_process_thread()宏遍历所有进程,进而借用oom_scan_process_thread()获得进程扫描类型然后通过switch-case作特殊化处理,例如存在某进程退出中则中断扫描、某进程占用内存过多且被标识为优先kill掉则优选等特殊处理。而正常情况则会通过oom_badness()计算出进程的分值,然后根据最高分值将进程控制块返回回去。

    顺便研究一下oom_badness()的实现:

    【file:/ mm/oom_kill.c】
    /**
     * oom_badness - heuristic function to determine which candidate task to kill
     * @p: task struct of which task we should calculate
     * @totalpages: total present RAM allowed for page allocation
     *
     * The heuristic for determining which task to kill is made to be as simple and
     * predictable as possible. The goal is to return the highest value for the
     * task consuming the most memory to avoid subsequent oom failures.
     */
    unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
                  const nodemask_t *nodemask, unsigned long totalpages)
    {
        long points;
        long adj;
     
        if (oom_unkillable_task(p, memcg, nodemask))
            return 0;
     
        p = find_lock_task_mm(p);
        if (!p)
            return 0;
     
        adj = (long)p->signal->oom_score_adj;
        if (adj == OOM_SCORE_ADJ_MIN) {
            task_unlock(p);
            return 0;
        }
     
        /*
         * The baseline for the badness score is the proportion of RAM that each
         * task's rss, pagetable and swap space use.
         */
        points = get_mm_rss(p->mm) + atomic_long_read(&p->mm->nr_ptes) +
             get_mm_counter(p->mm, MM_SWAPENTS);
        task_unlock(p);
     
        /*
         * Root processes get 3% bonus, just like the __vm_enough_memory()
         * implementation used by LSMs.
         */
        if (has_capability_noaudit(p, CAP_SYS_ADMIN))
            points -= (points * 3) / 100;
     
        /* Normalize to oom_score_adj units */
        adj *= totalpages / 1000;
        points += adj;
     
        /*
         * Never return 0 for an eligible task regardless of the root bonus and
         * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
         */
        return points > 0 ? points : 1;
    }
    

    计算进程分值的函数中,首先排除了不可OOM kill的进程以及oom_score_adj值为OOM_SCORE_ADJ_MIN(即-1000)的进程,其中oom_score_adj取值范围是-1000到1000;接着就是计算进程的RSS、页表以及SWAP空间的使用量占RAM的比重,如果该进程是超级进程,则去除3%的权重;最后将oom_score_adj和points归一后,但凡小于0值的都返回1,其他的则返回原值。由此可知,分值越低的则越不会被kill,而且该值可以通过修改oom_score_adj进行调整。

    最后分析一下找到了最“bad”的进程后,其享受的“待遇”oom_kill_process():

    【file:/ mm/oom_kill.c】
    /*
     * Must be called while holding a reference to p, which will be released upon
     * returning.
     */
    void oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
                  unsigned int points, unsigned long totalpages,
                  struct mem_cgroup *memcg, nodemask_t *nodemask,
                  const char *message)
    {
        struct task_struct *victim = p;
        struct task_struct *child;
        struct task_struct *t;
        struct mm_struct *mm;
        unsigned int victim_points = 0;
        static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
                              DEFAULT_RATELIMIT_BURST);
     
        /*
         * If the task is already exiting, don't alarm the sysadmin or kill
         * its children or threads, just set TIF_MEMDIE so it can die quickly
         */
        if (p->flags & PF_EXITING) {
            set_tsk_thread_flag(p, TIF_MEMDIE);
            put_task_struct(p);
            return;
        }
     
        if (__ratelimit(&oom_rs))
            dump_header(p, gfp_mask, order, memcg, nodemask);
     
        task_lock(p);
        pr_err("%s: Kill process %d (%s) score %d or sacrifice child
    ",
            message, task_pid_nr(p), p->comm, points);
        task_unlock(p);
     
        /*
         * If any of p's children has a different mm and is eligible for kill,
         * the one with the highest oom_badness() score is sacrificed for its
         * parent. This attempts to lose the minimal amount of work done while
         * still freeing memory.
         */
        read_lock(&tasklist_lock);
        for_each_thread(p, t) {
            list_for_each_entry(child, &t->children, sibling) {
                unsigned int child_points;
     
                if (child->mm == p->mm)
                    continue;
                /*
                 * oom_badness() returns 0 if the thread is unkillable
                 */
                child_points = oom_badness(child, memcg, nodemask,
                                    totalpages);
                if (child_points > victim_points) {
                    put_task_struct(victim);
                    victim = child;
                    victim_points = child_points;
                    get_task_struct(victim);
                }
            }
        }
        read_unlock(&tasklist_lock);
     
        p = find_lock_task_mm(victim);
        if (!p) {
            put_task_struct(victim);
            return;
        } else if (victim != p) {
            get_task_struct(p);
            put_task_struct(victim);
            victim = p;
        }
     
        /* mm cannot safely be dereferenced after task_unlock(victim) */
        mm = victim->mm;
        pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB
    ",
            task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
            K(get_mm_counter(victim->mm, MM_ANONPAGES)),
            K(get_mm_counter(victim->mm, MM_FILEPAGES)));
        task_unlock(victim);
     
        /*
         * Kill all user processes sharing victim->mm in other thread groups, if
         * any. They don't get access to memory reserves, though, to avoid
         * depletion of all memory. This prevents mm->mmap_sem livelock when an
         * oom killed thread cannot exit because it requires the semaphore and
         * its contended by another thread trying to allocate memory itself.
         * That thread will now get access to memory reserves since it has a
         * pending fatal signal.
         */
        rcu_read_lock();
        for_each_process(p)
            if (p->mm == mm && !same_thread_group(p, victim) &&
                !(p->flags & PF_KTHREAD)) {
                if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
                    continue;
     
                task_lock(p); /* Protect ->comm from prctl() */
                pr_err("Kill process %d (%s) sharing same memory
    ",
                    task_pid_nr(p), p->comm);
                task_unlock(p);
                do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
            }
        rcu_read_unlock();
     
        set_tsk_thread_flag(victim, TIF_MEMDIE);
        do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
        put_task_struct(victim);
    }
    

    该函数将会判断当前被kill的进程情况,如果该进程处于退出状态,则设置TIF_MEMDIE标志,不做kill操作;接着会通过list_for_each_entry()遍历该进程的子进程信息,如果某个子进程拥有不同的mm且合适被kill掉,将会优先考虑将该子进程替代父进程kill掉,这样可以避免kill掉父进程带来的接管子进程的工作开销;再往下通过find_lock_task_mm()找到持有mm锁的进程,如果进程处于退出状态,则return,否则继续处理,若此时的进程与传入的不是同一个时则更新victim;继而接着通过for_each_process()查找与当前被kill进程使用到了同样的共享内存的进程进行一起kill掉,kill之前将对应的进程添加标识TIF_MEMDIE,而kill的动作则是通过发送SICKILL信号给对应进程,由被kill进程从内核态返回用户态时进行处理。

    至此,OOM kill处理分析完毕。

  • 相关阅读:
    MongoDB面试题
    spider 爬虫文件基本参数(3)
    命令行工具(2)
    初始scrapy,简单项目创建和CSS选择器,xpath选择器(1)
    数据分析实例(离海洋距离与最高温度之间的关系分析)
    路飞业务分析
    MYSQL 主从复制,读写分离(8)
    pyquery 学习
    selenium case报错重新执行
    python小技巧
  • 原文地址:https://www.cnblogs.com/linhaostudy/p/10339277.html
Copyright © 2020-2023  润新知