• Exercise 1.15 sine


    题目:

      The sine of an angle (specified in radians) can be computed by making use of the approximation sin x  x if x is sufficiently small, and the trigonometric identity. 

    sin(r)=3*sin(r/3)-4*(sin(r/3))^3

    to reduce the size of the argument of sin. (For purposes of this exercise an angle is considered ``sufficiently small'' if its magnitude is not greater than 0.1 radians.) These ideas are incorporated in the following procedures:

    (define (cube x) (* x x x))
    (define (p x) (- (* 3 x) (* 4 (cube x))))
    (define (sine angle)
      (if   (not (> (abs angle) 0.1))
        angle
        (p (sine (/ angle 3.0)))))

    a. How many times is the procedure p applied when (sine 12.15) is evaluated?

    b. What is the order of growth in space and number of steps (as a function of a) used by the process generated by the sine procedure when (sine a) is evaluated?

    -----------------------------------------------------------------------------------------------------------------------------------------------------------------

    函数sine是tree recursive,所以树的高度决定了复杂度。而树的高度为logN。因此,复杂度为 2^logN 即O(N)

  • 相关阅读:
    初识Qgis
    特征向量与特征值及其应用
    练习 |委托方在每个月重复委案率
    Redis命令总结
    sharepoint2013 Restore-SPSite 报错,采用数据库还原
    MySql定期存档数据
    PostgreSQL的 fdw 跨库使用
    java&c# dec 加密,通用
    TypeScript
    CentOS挂载windows共享文件夹
  • 原文地址:https://www.cnblogs.com/linghuaichong/p/3978919.html
Copyright © 2020-2023  润新知