• Python实现DBScan


    from:https://www.cnblogs.com/wsine/p/5180778.html

    运行环境

    • Pyhton3
    • numpy(科学计算包)
    • matplotlib(画图所需,不画图可不必)

    计算过程

    st=>start: 开始
    e=>end: 结束
    op1=>operation: 读入数据
    cond=>condition: 是否还有未分类数据
    op2=>operation: 找一未分类点扩散
    op3=>operation: 输出结果
    
    st->op1->op2->cond
    cond(yes)->op2
    cond(no)->op3->e
    

    输入样例

    /* 788points.txt */
    15.55,28.65
    14.9,27.55
    14.45,28.35
    14.15,28.8
    13.75,28.05
    13.35,28.45
    13,29.15
    13.45,27.5
    13.6,26.5
    12.8,27.35
    12.4,27.85
    12.3,28.4
    12.2,28.65
    13.4,25.1
    12.95,25.95
    

    788points.txt完整文件:下载

    代码实现

    # -*- coding: utf-8 -*-
    __author__ = 'Wsine'
    
    import numpy as np
    import matplotlib.pyplot as plt
    import math
    import time
    
    UNCLASSIFIED = False
    NOISE = 0
    
    def loadDataSet(fileName, splitChar='	'):
        """
        输入:文件名
        输出:数据集
        描述:从文件读入数据集
        """
        dataSet = []
        with open(fileName) as fr:
            for line in fr.readlines():
                curline = line.strip().split(splitChar)
                fltline = list(map(float, curline))
                dataSet.append(fltline)
        return dataSet
    
    def dist(a, b):
        """
        输入:向量A, 向量B
        输出:两个向量的欧式距离
        """
        return math.sqrt(np.power(a - b, 2).sum())
    
    def eps_neighbor(a, b, eps):
        """
        输入:向量A, 向量B
        输出:是否在eps范围内
        """
        return dist(a, b) < eps
    
    def region_query(data, pointId, eps):
        """
        输入:数据集, 查询点id, 半径大小
        输出:在eps范围内的点的id
        """
        nPoints = data.shape[1]
        seeds = []
        for i in range(nPoints):
            if eps_neighbor(data[:, pointId], data[:, i], eps):
                seeds.append(i)
        return seeds
    
    def expand_cluster(data, clusterResult, pointId, clusterId, eps, minPts):
        """
        输入:数据集, 分类结果, 待分类点id, 簇id, 半径大小, 最小点个数
        输出:能否成功分类
        """
        seeds = region_query(data, pointId, eps)
        if len(seeds) < minPts: # 不满足minPts条件的为噪声点
            clusterResult[pointId] = NOISE
            return False
        else:
            clusterResult[pointId] = clusterId # 划分到该簇
            for seedId in seeds:
                clusterResult[seedId] = clusterId
    
            while len(seeds) > 0: # 持续扩张
                currentPoint = seeds[0]
                queryResults = region_query(data, currentPoint, eps)
                if len(queryResults) >= minPts:
                    for i in range(len(queryResults)):
                        resultPoint = queryResults[i]
                        if clusterResult[resultPoint] == UNCLASSIFIED:
                            seeds.append(resultPoint)
                            clusterResult[resultPoint] = clusterId
                        elif clusterResult[resultPoint] == NOISE:
                            clusterResult[resultPoint] = clusterId
                seeds = seeds[1:]
            return True
    
    def dbscan(data, eps, minPts):
        """
        输入:数据集, 半径大小, 最小点个数
        输出:分类簇id
        """
        clusterId = 1
        nPoints = data.shape[1]
        clusterResult = [UNCLASSIFIED] * nPoints
        for pointId in range(nPoints):
            point = data[:, pointId]
            if clusterResult[pointId] == UNCLASSIFIED:
                if expand_cluster(data, clusterResult, pointId, clusterId, eps, minPts):
                    clusterId = clusterId + 1
        return clusterResult, clusterId - 1
    
    def plotFeature(data, clusters, clusterNum):
        nPoints = data.shape[1]
        matClusters = np.mat(clusters).transpose()
        fig = plt.figure()
        scatterColors = ['black', 'blue', 'green', 'yellow', 'red', 'purple', 'orange', 'brown']
        ax = fig.add_subplot(111)
        for i in range(clusterNum + 1):
            colorSytle = scatterColors[i % len(scatterColors)]
            subCluster = data[:, np.nonzero(matClusters[:, 0].A == i)]
            ax.scatter(subCluster[0, :].flatten().A[0], subCluster[1, :].flatten().A[0], c=colorSytle, s=50)
    
    def main():
        dataSet = loadDataSet('788points.txt', splitChar=',')
        dataSet = np.mat(dataSet).transpose()
        # print(dataSet)
        clusters, clusterNum = dbscan(dataSet, 2, 15)
        print("cluster Numbers = ", clusterNum)
        # print(clusters)
        plotFeature(dataSet, clusters, clusterNum)
    
    if __name__ == '__main__':
        start = time.clock()
        main()
        end = time.clock()
        print('finish all in %s' % str(end - start))
        plt.show()
    

    输出样例

    cluster Numbers =  7
    finish all in 32.712135628590794
    

     

  • 相关阅读:
    Distribution of Data Through OCAF Tree
    OpenCASCADE Application Framework Data Framework Services
    OpenCascade Application Framework Introduction
    被限制的加法(高精入门)
    凝视
    第二题
    图论3 二分图匹配
    图论2 最近公共祖先LCA
    图论1 Tarjan算法
    最小生成树
  • 原文地址:https://www.cnblogs.com/lindaxin/p/8057552.html
Copyright © 2020-2023  润新知