• 关于sru源码class Model的parameters


    class Model(nn.Module):
        def __init__(self, words, args):
            super(Model, self).__init__()
            self.args = args
            self.n_d = args.d
            self.depth = args.depth
            self.drop = nn.Dropout(args.dropout)
            self.embedding_layer = EmbeddingLayer(self.n_d, words)
            self.n_V = self.embedding_layer.n_V
            if args.lstm:
                self.rnn = nn.LSTM(self.n_d, self.n_d,
                    self.depth,
                    dropout = args.rnn_dropout
                )
            else:
                self.rnn = MF.SRU(self.n_d, self.n_d, self.depth,
                    dropout = args.rnn_dropout,
                    rnn_dropout = args.rnn_dropout,
                    use_tanh = 0
                )
            self.output_layer = nn.Linear(self.n_d, self.n_V)
            # tie weights
            self.output_layer.weight = self.embedding_layer.embedding.weight#我运行了一下应该是指每个单词所对应的向量
    
            self.init_weights()
            if not args.lstm:
                self.rnn.set_bias(args.bias)
    
        def init_weights(self):
            val_range = (3.0/self.n_d)**0.5
            for p in self.parameters():
                if p.dim() > 1:  # matrix
                    p.data.uniform_(-val_range, val_range)
                    
                else:
                    p.data.zero_()
                    
    
        def forward(self, x, hidden):
            emb = self.drop(self.embedding_layer(x))
            output, hidden = self.rnn(emb, hidden)
            output = self.drop(output)
            output = output.view(-1, output.size(2))
            output = self.output_layer(output)
            return output, hidden
    
        def init_hidden(self, batch_size):#hidden层的0初始化
            weight = next(self.parameters()).data
            zeros = Variable(weight.new(self.depth, batch_size, self.n_d).zero_())
            if self.args.lstm:
                return (zeros, zeros)
            else:
                return zeros
    
        def print_pnorm(self):#p范数
            norms = [ "{:.0f}".format(x.norm().data[0]) for x in self.parameters() ]
            sys.stdout.write("	p_norm: {}
    ".format(
                norms
            ))
    

    这个问题源于我对Model类中的方法init_weight的理解,一直读不懂这个方法是做什么的,即self.parameters(),这个迭代器送出来的参数是什么呢,我假设这个里面应该是每一层更新的权重,所以我将sru源码的一部分给取了出来,让其输出Model里的parameters,代码如下(sru源码--language model):

    #coding:UTF-8
    '''
    Created on 2017-12-4
    
    @author: lai
    '''
    import time
    import random
    import math
    import argparse  
    import numpy as np
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    from torch.autograd import Variable
    import sys
    import cuda_functional as MF
     
    def read_corpus(path, eos="</s>"):
        data = [ ]
        with open(path) as fin:
            for line in fin:
                data += line.split() + [ eos ]
        return data
      
    def create_batches(data_text, map_to_ids, batch_size):
        data_ids = map_to_ids(data_text)
        N = len(data_ids)
        L = ((N-1) // batch_size) * batch_size
        x = np.copy(data_ids[:L].reshape(batch_size,-1).T)
        y = np.copy(data_ids[1:L+1].reshape(batch_size,-1).T)
        x, y = torch.from_numpy(x), torch.from_numpy(y)
        x, y = x.contiguous(), y.contiguous()
              
        return x,y
      
      
    class EmbeddingLayer(nn.Module):#为语料中每一个单词对应的其相应的词向量
        def __init__(self, n_d, words, fix_emb=False):
            super(EmbeddingLayer, self).__init__()
            word2id = {}
            for w in words:
                if w not in word2id:
                    word2id[w] = len(word2id)#把文本映射到数字上。
      
            self.word2id = word2id
            self.n_V, self.n_d = len(word2id), n_d#n_V应该是指词库大小,n_d指hidden state size  
            self.embedding = nn.Embedding(self.n_V, n_d)#赋予每个单词相应的词向量
      
        def forward(self, x):
            return self.embedding(x)
      
        def map_to_ids(self, text):#映射
            return np.asarray([self.word2id[x] for x in text],
                     dtype='int64'
            )
    
    
    class Model(nn.Module):
        def __init__(self, words, args):
            super(Model, self).__init__()
            self.args = args
            self.n_d = args.d
            self.depth = args.depth
            self.drop = nn.Dropout(args.dropout)
            self.embedding_layer = EmbeddingLayer(self.n_d, words)
            self.n_V = self.embedding_layer.n_V
            if args.lstm:
                self.rnn = nn.LSTM(self.n_d, self.n_d,
                    self.depth,
                    dropout = args.rnn_dropout
                )
            else:
                self.rnn = MF.SRU(self.n_d, self.n_d, self.depth,
                    dropout = args.rnn_dropout,
                    rnn_dropout = args.rnn_dropout,
                    use_tanh = 0
                )
                
            self.output_layer = nn.Linear(self.n_d, self.n_V)
            # tie weights
            self.output_layer.weight = self.embedding_layer.embedding.weight#我运行了一下应该是指每个单词所对应的向量
           
            self.init_weights()
            
            
            if not args.lstm:
                self.rnn.set_bias(args.bias)
    
        def init_weights(self):
            val_range = (3.0/self.n_d)**0.5
            for p in self.parameters():
                if p.dim() > 1:  # matrix
                    p.data.uniform_(-val_range, val_range)
                    print('222222',p.data)
                   
                else:
                    p.data.zero_()
                    print('0000',p.data)
                
    if __name__ == "__main__":
        argparser = argparse.ArgumentParser(sys.argv[0], conflict_handler='resolve')
        argparser.add_argument("--lstm", action="store_true")
        argparser.add_argument("--train", type=str, required=True, help="training file")
        
        
        argparser.add_argument("--batch_size", "--batch", type=int, default=32)
        argparser.add_argument("--unroll_size", type=int, default=35)
        argparser.add_argument("--max_epoch", type=int, default=300)
        argparser.add_argument("--d", type=int, default=910)
        argparser.add_argument("--dropout", type=float, default=0.7,
            help="dropout of word embeddings and softmax output"
        )
        argparser.add_argument("--rnn_dropout", type=float, default=0.2,
            help="dropout of RNN layers"
        )
        argparser.add_argument("--bias", type=float, default=-3,
            help="intial bias of highway gates",
        )
        argparser.add_argument("--depth", type=int, default=6)
        argparser.add_argument("--lr", type=float, default=1.0)
        argparser.add_argument("--lr_decay", type=float, default=0.98)
        argparser.add_argument("--lr_decay_epoch", type=int, default=175)
        argparser.add_argument("--weight_decay", type=float, default=1e-5)
        argparser.add_argument("--clip_grad", type=float, default=5)
    
        args = argparser.parse_args()
        print(args)
    
    train = read_corpus(args.train)
    model = Model(train, args)
    model.cuda()
    map_to_ids = model.embedding_layer.map_to_ids
    train = create_batches(train, map_to_ids, args.batch_size)
    print('111',model.parameters())
    

     再终端中输入运行命令:

    python 2.py --train train.txt  
    

     输出:

    Namespace(batch_size=32, bias=-3, clip_grad=5, d=910, depth=6, dropout=0.7, lr=1.0, lr_decay=0.98, lr_decay_epoch=175, lstm=False, max_epoch=300, rnn_dropout=0.2, train='train.txt', unroll_size=35, weight_decay=1e-05)
    222222 
     4.8794e-02  5.0702e-02 -3.2630e-02  ...  -5.3750e-02  4.2253e-02  1.6446e-02
    -5.1652e-02 -2.3051e-02  4.3890e-02  ...   1.8805e-02  1.6605e-02  2.6666e-02
     2.5273e-02 -5.1426e-03  5.3130e-02  ...  -4.8786e-02  4.0186e-02 -4.3724e-02
                    ...                   ⋱                   ...                
    -3.3133e-02  3.3400e-02  3.2185e-02  ...  -5.0593e-02 -2.3048e-02 -2.1572e-02
     2.9908e-03 -2.1938e-02 -2.1926e-02  ...  -4.5163e-02 -4.1678e-02 -5.2639e-02
    -2.2036e-02  2.3908e-04  1.9383e-02  ...  -1.0341e-02  4.7491e-02 -5.0599e-02
    [torch.FloatTensor of size 10000x910]
    
    222222 
    -6.1627e-03  1.9962e-02  5.6098e-02  ...   5.2324e-02 -1.0912e-02  1.7969e-02
     1.1683e-02  1.4485e-02  3.7155e-02  ...  -4.6458e-02 -2.8750e-02 -1.7442e-02
     5.3697e-02  3.4534e-02 -2.5292e-02  ...  -3.9264e-02 -2.8864e-02  2.3790e-02
                    ...                   ⋱                   ...                
     7.6450e-03 -2.1589e-02 -7.6684e-03  ...  -5.6521e-02 -5.5103e-02 -3.8065e-02
     4.7252e-02  5.7209e-02 -4.9279e-02  ...  -2.0944e-02 -4.3891e-03  1.8820e-02
     2.7026e-02  3.5590e-02  1.3660e-02  ...  -1.6219e-02 -2.1856e-02  3.2678e-02
    [torch.FloatTensor of size 910x2730]
    
    0000 
     0
     0
     0
    ⋮ 
     0
     0
     0
    [torch.FloatTensor of size 1820]
    
    222222 
    -1.2439e-02 -5.5866e-02 -3.5799e-02  ...  -4.9976e-02  7.3134e-03  4.5684e-03
    -4.6130e-02 -4.7773e-02 -4.3640e-02  ...  -3.2027e-02 -8.8562e-03  4.3218e-02
    -3.5260e-02  3.1456e-02  1.3324e-02  ...   3.4487e-02 -7.7102e-03  2.9963e-02
                    ...                   ⋱                   ...                
    -1.6921e-02 -1.5771e-02  5.3847e-02  ...   4.6351e-02  4.9333e-02 -1.1978e-02
    -1.8770e-02 -1.5817e-02 -7.6655e-05  ...  -8.4615e-03  1.4490e-02 -5.6743e-02
     4.1060e-03 -2.4452e-02  2.5512e-02  ...  -2.3961e-02 -5.2609e-02  3.3445e-02
    [torch.FloatTensor of size 910x2730]
    
    0000 
     0
     0
     0
    ⋮ 
     0
     0
     0
    [torch.FloatTensor of size 1820]
    
    222222 
    -3.6535e-02 -2.4697e-02  3.2514e-02  ...   3.0889e-02 -4.7916e-03  9.5873e-03
     4.5222e-02 -5.7333e-02  5.4079e-02  ...   1.7790e-02  3.5510e-02 -1.2171e-02
     7.5279e-03 -2.7133e-02 -5.1036e-02  ...   5.6305e-02 -2.0042e-02 -2.8884e-02
                    ...                   ⋱                   ...                
    -4.5409e-02 -1.6207e-02  3.4128e-02  ...  -5.6980e-02  1.6646e-02 -2.0662e-02
     2.8941e-02  3.1405e-02  5.7100e-02  ...   3.9499e-03  9.5197e-03 -2.3475e-02
    -5.1939e-02 -9.6567e-03  3.1139e-02  ...  -1.0642e-02 -4.8837e-02  2.7009e-02
    [torch.FloatTensor of size 910x2730]
    
    0000 
     0
     0
     0
    ⋮ 
     0
     0
     0
    [torch.FloatTensor of size 1820]
    
    222222 
     1.4545e-02 -1.7484e-02 -1.3450e-02  ...   4.9990e-02  3.6013e-03 -2.5272e-02
     4.6915e-02  2.4484e-02 -2.6583e-02  ...   3.4737e-02  3.9499e-02 -2.8632e-02
     1.8722e-02 -2.1864e-02  2.4649e-02  ...   4.9049e-02  4.8219e-02  3.7317e-02
                    ...                   ⋱                   ...                
    -2.6708e-02  4.2176e-02  3.8287e-02  ...   3.3608e-02 -2.7229e-02  9.4752e-03
     1.2404e-02  1.7356e-02  7.0494e-03  ...   1.5802e-02 -7.5168e-03 -4.1576e-02
    -3.1050e-02  3.5632e-02  2.2318e-03  ...  -1.9828e-02  4.4247e-02 -2.3669e-02
    [torch.FloatTensor of size 910x2730]
    
    0000 
     0
     0
     0
    ⋮ 
     0
     0
     0
    [torch.FloatTensor of size 1820]
    
    222222 
    -8.6860e-03  2.4917e-02 -4.8584e-02  ...  -1.1277e-02 -1.2668e-02 -1.6445e-02
    -2.5161e-02 -4.4705e-03 -4.5265e-02  ...  -3.1264e-02 -4.2164e-02 -2.4916e-02
    -1.8575e-02 -1.8767e-02 -5.2647e-02  ...   5.4461e-02 -5.0726e-02 -3.1518e-03
                    ...                   ⋱                   ...                
    -3.1745e-02 -3.8159e-02  1.7577e-02  ...  -5.6739e-02  1.9196e-02  1.6574e-02
    -5.5951e-02 -6.2410e-03 -5.6714e-02  ...   2.8419e-02  5.7141e-02  2.3431e-02
    -1.7646e-02  8.7587e-04 -2.3462e-02  ...  -4.9807e-04  4.2565e-02 -4.5738e-02
    [torch.FloatTensor of size 910x2730]
    
    0000 
     0
     0
     0
    ⋮ 
     0
     0
     0
    [torch.FloatTensor of size 1820]
    
    222222 
    -8.5008e-03  4.9589e-02  4.8005e-02  ...   5.2643e-03  1.4385e-02 -1.8161e-02
     3.0520e-03  5.5756e-02  3.9487e-02  ...  -2.9614e-03 -5.1740e-02 -4.8080e-02
     1.8335e-02 -5.5416e-02 -1.0836e-02  ...   2.8635e-02 -8.8250e-03 -1.4533e-02
                    ...                   ⋱                   ...                
     5.2809e-02 -3.2417e-02  3.9305e-02  ...   2.2464e-02 -4.7438e-02  5.1094e-02
    -5.5829e-02 -4.9564e-02  1.3892e-02  ...  -3.4778e-02  4.3359e-02  8.6556e-03
    -2.1687e-03 -3.7360e-03  4.2217e-03  ...   3.9019e-02 -4.2598e-02  1.6985e-02
    [torch.FloatTensor of size 910x2730]
    
    0000 
     0
     0
     0
    ⋮ 
     0
     0
     0
    [torch.FloatTensor of size 1820]
    
    0000 
     0
     0
     0
    ⋮ 
     0
     0
     0
    [torch.FloatTensor of size 10000]
    
    111 <generator object Module.parameters at 0x7f6fe8cc3eb8>
    

     下面是方法init_weight的代码:

        def init_weights(self):
            val_range = (3.0/self.n_d)**0.5
            for p in self.parameters():
                if p.dim() > 1:  # matrix
                    p.data.uniform_(-val_range, val_range)
                    print('222222',p.data)
                   
                else:
                    p.data.zero_()
                    print('0000',p.data)
    

     上面运行输出的结果就是p.data.uniform_(-val_range, val_range)以及p.data.zero_()的值,这里的参数我猜测一个是sru中的权重(w)另一个是偏置(b),但是这样的话就有一个疑问,这里输出的第一个大小为10000*910的tensor是词向量化得到的10000个单词的词向量,而最后一个大小为10000的tensor是最后线性分类全连接层的参数,所以剩下有六对的w和b,但是这样的话就有一个疑问,因为循环神经网络是时间共享的,所以应该只有一对才对,为了解决这个疑问,

    我将用lstm做mnist分类的代码拿了出来,并将它的model的参数打印了出来,代码和结果如下所示

    代码:

    import torch
    from torch import nn
    from torch.autograd import Variable
    import torchvision.datasets as dsets
    import torchvision.transforms as transforms
    import matplotlib.pyplot as plt
    
    
    torch.manual_seed(1)    # reproducible
    
    # Hyper Parameters
    EPOCH = 1               # train the training data n times, to save time, we just train 1 epoch
    BATCH_SIZE = 64
    TIME_STEP = 28          # rnn time step / image height
    INPUT_SIZE = 28         # rnn input size / image width
    LR = 0.01               # learning rate
    DOWNLOAD_MNIST = True   # set to True if haven't download the data
    
    
    # Mnist digital dataset
    train_data = dsets.MNIST(
        root='./mnist/',
        train=True,                         # this is training data
        transform=transforms.ToTensor(),    # Converts a PIL.Image or numpy.ndarray to
                                            # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
        download=DOWNLOAD_MNIST,            # download it if you don't have it
    )
    
    # plot one example
    print(train_data.train_data.size())     # (60000, 28, 28)
    print(train_data.train_labels.size())   # (60000)
    plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
    plt.title('%i' % train_data.train_labels[0])
    plt.show()
    
    # Data Loader for easy mini-batch return in training
    train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
    
    # convert test data into Variable, pick 2000 samples to speed up testing
    test_data = dsets.MNIST(root='./mnist/', train=False, transform=transforms.ToTensor())
    test_x = Variable(test_data.test_data, volatile=True).type(torch.FloatTensor)[:2000]/255.   # shape (2000, 28, 28) value in range(0,1)
    test_y = test_data.test_labels.numpy().squeeze()[:2000]    # covert to numpy array
    
    
    class RNN(nn.Module):
        def __init__(self):
            super(RNN, self).__init__()
    
            self.rnn = nn.LSTM(         # if use nn.RNN(), it hardly learns
                input_size=INPUT_SIZE,
                hidden_size=64,         # rnn hidden unit
                num_layers=2,           # number of rnn layer
                batch_first=True,       # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
            )
            
            self.out = nn.Linear(64, 10)
            
        def forward(self, x):
            # x shape (batch, time_step, input_size)
            # r_out shape (batch, time_step, output_size)
            # h_n shape (n_layers, batch, hidden_size)
            # h_c shape (n_layers, batch, hidden_size)
            r_out, (h_n, h_c) = self.rnn(x, None)   # None represents zero initial hidden state
    
            # choose r_out at the last time step
            out = self.out(r_out[:, -1, :])
            return out
        def init_weights(self):
            for p in self.parameters():
                print('PPP',p.data)
    
    rnn = RNN()
    print(rnn.init_weights())
           
    

     输出:

    torch.Size([60000, 28, 28])
    torch.Size([60000])
    PPP 
    -2.0745e-02  1.2430e-01  5.5081e-02  ...  -1.4137e-02  9.4529e-02 -6.7606e-02
    -1.1815e-01  8.6035e-03  4.2617e-02  ...   8.2401e-02 -1.1524e-01 -5.6738e-02
    -8.2542e-02 -1.1019e-01  9.4536e-02  ...   4.0159e-02  6.2041e-02 -5.0376e-02
                    ...                   ⋱                   ...                
     1.0238e-01  5.3194e-02  5.3342e-02  ...  -1.5019e-02 -1.0299e-01  2.3091e-02
     4.5909e-02 -5.0352e-02 -2.5497e-02  ...   1.1765e-01 -1.1448e-01 -3.1609e-02
     3.1011e-06 -1.0142e-01  1.2229e-01  ...   3.1813e-02  7.6921e-02  4.4233e-03
    [torch.FloatTensor of size 256x28]
    
    PPP 
    -2.4325e-03  1.1478e-02  9.3458e-02  ...  -1.1657e-01 -3.6968e-03  1.2013e-01
     1.2265e-01 -2.3560e-02 -5.3951e-02  ...   4.1457e-02 -6.7170e-02  6.1414e-02
     1.2334e-01 -6.3188e-02  3.9050e-02  ...   8.4631e-02  4.0930e-04  8.3604e-03
                    ...                   ⋱                   ...                
     5.6417e-02  3.7298e-02  5.7616e-02  ...   2.9125e-02 -6.6484e-02 -4.2838e-02
    -6.0267e-02  8.6004e-02  4.4727e-02  ...  -4.9643e-02 -3.5065e-03 -2.5401e-02
     8.1001e-02  5.8518e-02 -9.0292e-02  ...  -1.5258e-02  5.6519e-02  6.1370e-02
    [torch.FloatTensor of size 256x64]
    
    PPP 
     0.0282
    -0.0362
     0.0864
     0.0677
     0.0012
     0.0699
     0.0850
    -0.0927
     0.0074
    -0.0183
     0.0679
     0.1177
     0.0255
     0.1012
     0.1248
    -0.0625
     0.0023
    -0.0255
     0.0870
    -0.0900
     0.1057
     0.1233
     0.0982
     0.0475
    -0.0387
    -0.0267
    -0.0964
    -0.0153
     0.0004
    -0.0410
     0.0771
    -0.0399
     0.0746
    -0.0210
    -0.0396
     0.1108
     0.0347
     0.0263
     0.0244
     0.1113
    -0.1071
     0.1036
     0.0478
     0.0217
     0.0314
     0.0138
    -0.1113
    -0.1192
    -0.0286
    -0.0674
    -0.0165
    -0.0097
     0.0663
    -0.1072
     0.0048
    -0.1062
     0.0677
    -0.0028
     0.0809
     0.0119
     0.1111
     0.0363
     0.0877
     0.0189
     0.0396
     0.0358
    -0.0257
     0.0966
     0.0951
    -0.1179
    -0.0906
    -0.0619
    -0.0229
    -0.1193
     0.0254
     0.0110
     0.0400
     0.0655
     0.1200
    -0.0940
     0.0728
     0.0882
    -0.1049
     0.0939
     0.0041
    -0.0711
     0.0914
    -0.0461
     0.0109
    -0.0800
    -0.0766
    -0.0265
    -0.0381
    -0.0433
     0.0193
     0.0812
     0.0163
     0.0358
    -0.0053
    -0.0900
    -0.0037
     0.1009
     0.1084
     0.1006
    -0.1237
    -0.1227
     0.0808
    -0.0083
     0.0376
     0.0424
    -0.1121
     0.0379
     0.0457
     0.0443
    -0.0528
     0.0220
    -0.0690
     0.0620
    -0.0660
    -0.1124
     0.1238
     0.1188
     0.0121
     0.0574
     0.1246
     0.1000
    -0.1034
     0.0387
     0.0307
    -0.0669
    -0.0619
    -0.0819
     0.0566
     0.0150
     0.0271
    -0.0843
    -0.0209
    -0.0957
    -0.1174
     0.1031
    -0.1250
     0.0180
    -0.0449
     0.0920
     0.1114
     0.0604
    -0.0987
     0.0378
    -0.0088
    -0.0471
     0.0549
    -0.1234
     0.1069
    -0.0567
     0.0241
    -0.0163
     0.0585
     0.0199
    -0.0188
     0.0265
    -0.0673
     0.0697
    -0.1224
     0.1042
    -0.0697
     0.0695
     0.0575
    -0.1156
     0.0663
     0.1177
     0.0562
    -0.0417
    -0.0054
     0.0045
     0.0614
    -0.0089
     0.0203
    -0.1049
    -0.1201
    -0.0638
     0.0728
     0.0208
    -0.1018
    -0.0363
     0.1128
    -0.0524
     0.0992
     0.0937
    -0.0378
    -0.0195
    -0.0188
    -0.0483
     0.0779
    -0.0754
     0.0148
    -0.0060
     0.0743
    -0.0820
    -0.0673
    -0.1153
    -0.1039
     0.1002
     0.1217
    -0.0797
     0.0217
     0.1129
     0.0951
     0.0616
    -0.1183
    -0.0252
    -0.0304
     0.1234
    -0.0538
     0.0367
     0.0407
     0.1176
    -0.0902
    -0.0805
     0.0111
    -0.0863
    -0.1222
    -0.0678
    -0.0044
    -0.1218
     0.0300
     0.0739
    -0.1152
     0.1235
    -0.0317
     0.0685
     0.0598
     0.1120
    -0.0902
     0.1143
     0.0801
     0.0399
     0.0360
    -0.1152
    -0.1007
    -0.1126
     0.0860
    -0.0592
     0.0955
     0.0719
    -0.1118
     0.0839
    -0.1176
     0.0537
     0.0078
     0.1173
     0.0129
    -0.0301
     0.0105
     0.0961
     0.1167
    -0.0015
    [torch.FloatTensor of size 256]
    
    PPP 
    -0.0896
    -0.0394
     0.0575
     0.0898
    -0.0369
    -0.0604
    -0.1172
    -0.0549
    -0.0869
     0.0679
     0.0554
     0.0323
     0.1063
     0.0728
     0.0056
    -0.0021
    -0.0868
    -0.0736
    -0.1204
    -0.0460
    -0.0145
    -0.0992
     0.0601
     0.0738
     0.0064
    -0.0570
    -0.0947
     0.0027
     0.0669
     0.0408
    -0.0228
     0.0554
     0.0698
     0.0994
     0.0893
     0.1066
     0.1231
    -0.0688
     0.0152
    -0.0445
    -0.0341
    -0.0329
     0.1052
    -0.0456
    -0.0409
     0.0484
     0.0768
     0.0061
     0.0429
    -0.0186
     0.0379
    -0.0657
    -0.0839
     0.0442
    -0.0539
    -0.0483
     0.0572
    -0.0753
    -0.0779
    -0.1166
     0.0279
    -0.0066
     0.0854
     0.0428
     0.0903
    -0.0658
     0.1244
    -0.0133
     0.0524
     0.0666
    -0.0662
     0.1046
    -0.0649
     0.1223
     0.0819
    -0.0074
     0.0782
    -0.0263
    -0.0057
    -0.0470
     0.1029
     0.1156
     0.0884
     0.0517
     0.0135
     0.0975
     0.0406
     0.0615
    -0.1222
     0.0127
     0.0202
     0.0154
    -0.0490
     0.0423
    -0.0904
     0.0034
     0.0662
    -0.0574
     0.1162
    -0.0481
    -0.0147
     0.0243
     0.0805
     0.0352
     0.1058
     0.0748
    -0.0551
    -0.0796
    -0.1161
    -0.0610
    -0.0102
     0.0143
     0.0791
     0.0752
     0.0099
     0.1133
    -0.0766
     0.0520
     0.0810
     0.1068
    -0.0541
     0.0390
     0.1153
     0.0095
     0.0118
    -0.0185
    -0.1179
     0.0452
     0.0302
    -0.0776
     0.0909
    -0.0086
     0.0527
     0.0133
     0.1130
    -0.0909
     0.1160
     0.1218
     0.0347
    -0.0277
     0.0401
     0.1104
    -0.0635
    -0.0656
    -0.0928
    -0.0365
     0.0579
     0.1197
    -0.0098
    -0.0489
    -0.1086
     0.0579
     0.0282
    -0.0649
     0.0929
     0.0039
     0.0507
     0.1174
     0.0951
    -0.0533
     0.0641
     0.0185
     0.0011
    -0.0621
     0.0776
    -0.0298
    -0.1170
     0.0693
     0.0740
    -0.0802
     0.0799
    -0.0972
    -0.0010
     0.0589
    -0.0510
    -0.0292
    -0.0500
     0.0838
    -0.0176
     0.0527
    -0.0037
     0.0092
     0.0478
     0.0512
    -0.1239
     0.0042
    -0.0440
    -0.0278
    -0.0434
     0.0052
     0.0466
    -0.0746
    -0.1143
    -0.0694
     0.0201
     0.0768
    -0.0924
     0.0589
    -0.0591
    -0.1036
     0.0529
     0.0197
    -0.1067
    -0.0165
    -0.0370
     0.0374
    -0.0818
    -0.0040
     0.0659
     0.1040
    -0.0619
    -0.1208
    -0.1066
     0.1142
     0.0920
     0.0833
     0.0214
     0.1020
    -0.0266
    -0.0508
     0.0550
    -0.0452
    -0.0696
     0.0879
     0.0680
     0.1009
    -0.0232
     0.0159
    -0.1064
    -0.0839
     0.1089
    -0.0473
    -0.0158
     0.0185
    -0.1224
     0.1131
     0.1089
     0.1030
    -0.0451
    -0.0555
    -0.0767
    -0.0546
     0.0403
    -0.1247
    -0.0622
    -0.0063
    -0.0933
     0.0445
     0.0727
     0.0664
    -0.0864
    -0.0978
     0.0016
    -0.1126
     0.0716
     0.0169
    [torch.FloatTensor of size 256]
    
    PPP 
    -6.6907e-02 -1.1469e-01  6.4129e-02  ...   3.8876e-02 -4.4813e-02  4.7873e-02
     1.0064e-01 -1.2048e-01  7.3207e-02  ...  -1.2326e-02 -1.1054e-01 -1.1371e-01
    -9.9514e-02 -4.0268e-04  7.1349e-03  ...  -1.0321e-01 -1.2389e-01 -4.2875e-03
                    ...                   ⋱                   ...                
     6.1065e-02 -5.2070e-02 -7.4900e-02  ...   3.0900e-02  5.6731e-02  1.0931e-01
    -4.2554e-03  1.2137e-01 -1.0776e-02  ...  -9.8254e-03 -3.8701e-02 -2.6478e-02
    -6.6246e-02  4.3564e-02  4.7540e-02  ...  -8.6700e-02 -6.5478e-03 -7.8267e-02
    [torch.FloatTensor of size 256x64]
    
    PPP 
    -9.3750e-02 -8.5315e-02 -3.2224e-02  ...   4.6174e-02  1.2341e-01  7.0605e-02
    -1.0107e-01 -1.1443e-01 -1.2133e-01  ...  -1.1138e-01  7.7709e-02  4.1309e-02
    -1.0675e-01 -9.5286e-02  8.1566e-02  ...  -5.4656e-02 -2.9437e-02 -3.4233e-02
                    ...                   ⋱                   ...                
     1.0409e-01  6.9673e-02  6.2664e-02  ...  -3.2450e-02 -7.9281e-02  1.1497e-01
    -2.8081e-02 -1.2337e-01  6.9056e-02  ...  -1.0816e-01 -8.9076e-02  5.8901e-02
     6.1354e-02 -2.9104e-02 -5.5389e-02  ...  -3.9486e-02 -2.9318e-02  1.1121e-01
    [torch.FloatTensor of size 256x64]
    
    PPP 
    -0.0661
     0.0039
     0.0343
    -0.0428
    -0.0931
     0.0150
     0.0667
    -0.0503
     0.1009
     0.0786
     0.0435
    -0.0952
     0.0759
    -0.0155
    -0.0651
    -0.0916
     0.1066
     0.0204
    -0.0731
     0.1241
     0.0861
    -0.0129
    -0.0326
    -0.0626
    -0.1194
     0.0683
    -0.0699
    -0.0822
     0.0856
    -0.0142
    -0.0683
    -0.1223
    -0.0443
    -0.1215
     0.0422
     0.0083
     0.0220
    -0.1037
     0.0534
     0.0914
    -0.0479
    -0.0273
     0.0670
    -0.0777
     0.0030
     0.0343
    -0.1053
    -0.0880
    -0.0184
     0.0800
    -0.0517
    -0.0596
    -0.0919
     0.0129
     0.0592
     0.0903
     0.0144
    -0.0522
    -0.0801
    -0.0489
     0.0093
    -0.0173
    -0.0433
    -0.0887
     0.1231
    -0.0524
    -0.0295
    -0.0432
    -0.0109
    -0.0625
     0.0006
    -0.0658
     0.0526
    -0.0297
     0.0765
    -0.0805
     0.0268
    -0.0250
    -0.0652
    -0.1201
    -0.1215
    -0.0732
     0.0856
    -0.0101
    -0.1052
    -0.0456
    -0.0750
    -0.1149
     0.0586
     0.0594
     0.1186
     0.0742
     0.0826
     0.0612
     0.0535
     0.0827
     0.1247
    -0.0917
     0.0162
     0.0731
    -0.0980
    -0.0508
     0.1217
    -0.0242
     0.0939
     0.0172
     0.1151
     0.0706
    -0.1080
    -0.1144
    -0.0062
     0.1227
     0.0040
     0.0451
     0.0370
     0.0963
    -0.0548
     0.0073
     0.0590
    -0.0860
     0.0873
     0.0123
     0.0907
    -0.0206
     0.0959
     0.1026
     0.0361
     0.0632
    -0.0422
     0.0934
    -0.1055
    -0.1022
     0.0365
    -0.0169
    -0.0298
     0.0096
     0.0932
    -0.0130
    -0.0151
     0.0693
    -0.0823
    -0.0176
     0.0714
    -0.0319
     0.0251
     0.0878
    -0.0841
    -0.0804
     0.0915
     0.0282
     0.0470
    -0.0592
    -0.0913
    -0.1234
     0.0315
     0.0182
    -0.0110
     0.0275
    -0.0983
     0.0250
    -0.0442
    -0.0113
    -0.0569
     0.0902
     0.0690
     0.0543
    -0.0904
     0.0373
     0.0728
    -0.1175
    -0.0886
    -0.0702
    -0.0567
    -0.0740
     0.1204
    -0.0247
    -0.0659
     0.0075
     0.0327
     0.0215
     0.0539
    -0.1142
    -0.0042
     0.0156
    -0.1102
     0.0036
     0.0363
    -0.0509
    -0.0219
    -0.0764
     0.1240
    -0.0074
     0.0395
     0.0058
    -0.0012
     0.0614
     0.0985
     0.0915
    -0.0060
    -0.0268
     0.1034
     0.1116
     0.0221
     0.1064
    -0.0271
     0.0554
     0.0099
    -0.0627
    -0.0422
     0.0102
    -0.0310
     0.0050
    -0.0806
     0.1235
    -0.0786
    -0.1168
    -0.1148
     0.0717
    -0.1048
     0.0509
     0.0219
     0.0902
    -0.0821
    -0.0005
     0.0549
    -0.0563
    -0.0460
    -0.0904
    -0.0209
     0.0030
    -0.1225
    -0.1071
    -0.0584
    -0.0711
    -0.0749
    -0.1088
    -0.0597
    -0.0829
     0.0858
    -0.0987
    -0.0564
    -0.0063
     0.0432
    -0.1095
    -0.0563
     0.0691
    -0.0815
    -0.0858
     0.1200
     0.0459
     0.0008
     0.0818
    -0.0996
    -0.0737
    -0.0613
    -0.0190
    [torch.FloatTensor of size 256]
    
    PPP 
     0.0130
    -0.0655
     0.0321
    -0.0441
     0.0407
     0.0434
    -0.0885
     0.1136
    -0.0390
     0.0391
    -0.0185
     0.1143
     0.0910
     0.0787
     0.1237
     0.0194
     0.1165
     0.0155
    -0.0504
     0.0776
    -0.0269
     0.0218
    -0.0945
    -0.0426
     0.0947
    -0.0057
     0.1128
     0.0760
    -0.0732
    -0.0685
    -0.0252
     0.0184
     0.0505
     0.0759
     0.0615
    -0.0737
     0.0955
    -0.0121
    -0.0377
    -0.0322
    -0.1096
     0.0560
    -0.0542
     0.0561
     0.0817
    -0.1046
    -0.1038
     0.0840
     0.0799
    -0.0957
    -0.0016
     0.0730
     0.0618
     0.0825
     0.0690
    -0.0078
    -0.1246
     0.0268
    -0.0774
     0.0724
    -0.0090
     0.0527
     0.0685
     0.0065
     0.1016
     0.0774
    -0.0896
    -0.1083
    -0.0638
     0.0117
     0.0420
    -0.0266
    -0.1220
     0.0789
     0.1214
    -0.1015
    -0.0909
    -0.0033
     0.0222
     0.0632
    -0.0497
     0.1060
    -0.0510
    -0.0921
     0.0712
     0.0647
     0.0967
     0.0060
    -0.0525
     0.1039
     0.0658
    -0.0608
     0.0169
     0.0928
    -0.0088
    -0.0515
     0.1121
     0.0269
    -0.0597
     0.0628
    -0.0472
    -0.1149
     0.0278
    -0.0011
    -0.1209
    -0.0417
    -0.0575
    -0.1082
    -0.0024
    -0.0415
     0.0768
    -0.0113
    -0.0656
    -0.1064
     0.0836
    -0.0422
     0.0870
    -0.1213
    -0.1221
    -0.0013
    -0.0250
     0.0287
     0.0259
     0.1054
    -0.0570
     0.0618
    -0.0923
    -0.0611
     0.0055
     0.0844
     0.0405
     0.1082
    -0.0302
    -0.1106
    -0.0838
     0.0420
     0.0394
     0.1039
     0.0928
    -0.1081
     0.1234
    -0.0382
    -0.0146
     0.0087
    -0.1011
    -0.0149
     0.0597
     0.0590
    -0.0194
    -0.0813
    -0.0690
     0.0264
    -0.1082
    -0.0783
     0.0951
     0.1159
    -0.0691
     0.0259
    -0.0214
     0.1139
    -0.0472
     0.0963
     0.0718
     0.1083
    -0.1242
     0.0716
    -0.0109
     0.0272
     0.1071
    -0.1237
     0.0692
    -0.0022
     0.0654
     0.1097
     0.0385
     0.0353
    -0.0804
     0.0428
     0.0702
    -0.1195
     0.0169
    -0.0206
     0.1065
     0.0441
     0.0651
    -0.0746
     0.0194
    -0.0477
     0.0950
    -0.0569
    -0.0991
     0.0898
    -0.0652
     0.0683
     0.1220
    -0.0222
    -0.0751
     0.0174
     0.0994
     0.0596
    -0.1138
     0.0801
    -0.0527
     0.0947
     0.0996
     0.0951
    -0.0851
    -0.0969
    -0.0364
    -0.0450
    -0.0039
     0.0870
    -0.1237
    -0.1074
     0.0992
     0.0800
    -0.0711
     0.0041
     0.0270
    -0.0486
    -0.0652
    -0.0523
    -0.0862
    -0.0883
    -0.1182
    -0.0350
    -0.1132
     0.0665
    -0.0439
     0.0392
     0.0400
     0.0344
    -0.1176
    -0.0682
    -0.1236
     0.0208
    -0.1139
     0.0633
    -0.1106
     0.0126
     0.0185
    -0.0219
     0.1117
     0.0977
     0.0860
     0.0608
     0.0103
     0.0771
    -0.0751
     0.0909
     0.0020
    -0.0930
     0.0830
    -0.0403
    -0.0516
     0.0852
    [torch.FloatTensor of size 256]
    
    PPP 
    
    Columns 0 to 9 
     0.0991  0.1218 -0.0816  0.0220  0.1029  0.0342 -0.0448 -0.0178 -0.0067  0.0853
     0.1030 -0.0817  0.0258  0.0233  0.0885 -0.1076  0.0526  0.0402  0.0480 -0.1025
     0.0224 -0.1067  0.0508 -0.0831 -0.0963  0.1152 -0.0994 -0.0305 -0.1041 -0.0282
    -0.0365 -0.0857 -0.0107  0.0929 -0.0940 -0.0774 -0.0135 -0.0096  0.1087  0.1086
     0.0340 -0.0464 -0.1135  0.0084 -0.0820 -0.0957  0.0070  0.0113  0.0882  0.1237
     0.0658 -0.1047 -0.1228 -0.0985  0.0482  0.1177 -0.0759 -0.0205  0.0492 -0.0698
    -0.0384  0.0334  0.0953  0.1019 -0.1207 -0.0936 -0.0745 -0.0863  0.0533  0.0637
    -0.0595  0.0473 -0.0147  0.0062 -0.0191 -0.1011 -0.0289 -0.0175 -0.0966 -0.0236
     0.0033  0.0701  0.0546  0.0245 -0.0388 -0.0780  0.1232  0.0122 -0.0397 -0.0912
    -0.1052 -0.0875 -0.0197  0.0015  0.1021 -0.0661 -0.0445  0.0846 -0.0606 -0.0982
    
    Columns 10 to 19 
     0.1033 -0.0640  0.0401  0.0702 -0.0747 -0.0222 -0.0202 -0.1072  0.0767  0.0377
     0.0887  0.1194  0.1097  0.0148 -0.0138  0.0688  0.0077  0.1012  0.0860  0.0938
    -0.0802 -0.0107  0.1062 -0.0412 -0.0003 -0.0302  0.0076 -0.0905  0.0395  0.0955
    -0.0888 -0.1035  0.0805  0.0047 -0.0107  0.1076  0.0193 -0.0615 -0.0366  0.0952
    -0.0148  0.1075 -0.0537 -0.0461 -0.0562  0.0190 -0.1205 -0.0974 -0.1083 -0.0353
    -0.0527  0.1049 -0.0480  0.0007  0.0755 -0.0399  0.0567  0.0688  0.0719 -0.0474
     0.0052 -0.0320  0.0903 -0.0895  0.0861 -0.1100 -0.0788 -0.0094 -0.0595  0.0111
     0.0535 -0.0790 -0.0736 -0.0512  0.0414  0.0372 -0.0638 -0.1041 -0.0484 -0.0755
     0.1205 -0.0672  0.1016  0.0827  0.0972 -0.0551 -0.0410 -0.0551 -0.1206 -0.0395
    -0.0214  0.0026 -0.0185  0.0001  0.0064  0.0982  0.0946  0.0116 -0.0024 -0.1074
    
    Columns 20 to 29 
     0.0014 -0.0417  0.0009  0.0854  0.0269 -0.0232  0.0012  0.0069  0.1210 -0.0919
    -0.0958 -0.1185 -0.1184  0.0191  0.0536 -0.0257  0.0315 -0.0092  0.1055 -0.1166
     0.0894 -0.0709  0.0922 -0.0424  0.0420 -0.0950 -0.0118 -0.0910 -0.1123  0.0984
    -0.0553  0.0978  0.0158 -0.0619  0.0885 -0.0976  0.1039 -0.0054 -0.0926  0.0064
     0.1147 -0.0009 -0.0362 -0.0879 -0.0277 -0.1015 -0.1144 -0.0243 -0.1179  0.0933
    -0.0904 -0.1183  0.0636 -0.0606  0.0001 -0.0374 -0.0823 -0.0881 -0.0811 -0.0672
     0.0241 -0.0959  0.0423 -0.0978 -0.0285  0.0123  0.0488  0.0487  0.0176  0.0173
     0.1008  0.0326 -0.0710 -0.1112 -0.0287 -0.0300 -0.0440 -0.0343 -0.0450 -0.1118
     0.1113 -0.0555  0.0969 -0.0204 -0.0316 -0.0028 -0.0019  0.0290 -0.0231  0.0070
    -0.0039 -0.0672 -0.0438  0.0368  0.0553 -0.0499  0.0267 -0.0649  0.0019  0.0879
    
    Columns 30 to 39 
     0.1117 -0.0552  0.0605  0.0743  0.0197 -0.0904  0.0005  0.0353 -0.0751 -0.0130
     0.0750 -0.1095  0.0277  0.1156  0.0949 -0.0796  0.1044  0.0500  0.1119  0.0033
    -0.1121  0.0314  0.0501  0.0035 -0.1149  0.0623  0.0100 -0.0163  0.1058  0.0865
     0.0800 -0.0530 -0.0353  0.0779  0.1238 -0.0200 -0.0272  0.0986  0.0196 -0.0383
    -0.0122 -0.1203  0.0466 -0.0569 -0.1043 -0.0704  0.1004  0.0055  0.0543 -0.0131
    -0.0977 -0.0751  0.0328  0.0662 -0.0501  0.1024  0.1224 -0.0401  0.0107  0.0433
     0.0638 -0.1180 -0.0250 -0.1239  0.0566  0.0193 -0.0407 -0.0628  0.0466 -0.0568
     0.0265 -0.1144 -0.0753  0.1054 -0.0994  0.1162  0.0292  0.0838 -0.0420 -0.0506
    -0.0177  0.0262 -0.0189 -0.0819 -0.0847 -0.0090 -0.0930  0.1133  0.0611 -0.0546
     0.0987 -0.0040 -0.0567 -0.0284  0.0951 -0.0739  0.0193 -0.0317 -0.0896  0.0663
    
    Columns 40 to 49 
     0.0285  0.0341  0.1245 -0.0614 -0.0078 -0.0584 -0.0105  0.0094  0.0422 -0.0227
     0.0398  0.1004 -0.0884  0.0318 -0.0911 -0.1213 -0.0907 -0.0738 -0.0523 -0.0317
    -0.1230  0.0846 -0.0740 -0.0878  0.0250  0.0375 -0.0831  0.1182 -0.0754 -0.0871
    -0.0256  0.0675 -0.0249  0.0952 -0.1188 -0.0273  0.0934  0.1209  0.0765  0.0063
     0.0708  0.0393  0.0189  0.0350 -0.0329  0.1113  0.0110 -0.0083 -0.1152 -0.0735
     0.0585  0.0925  0.0616  0.0478  0.0957  0.1038  0.0545 -0.0227 -0.1126  0.0958
     0.1080 -0.1215  0.0274  0.0803 -0.1214  0.0364  0.0985 -0.0505  0.0941 -0.0675
    -0.0153  0.1246 -0.0902  0.0092  0.1193 -0.1020 -0.0869  0.0396  0.1078  0.0155
     0.1243  0.0651 -0.0685 -0.0275 -0.0058  0.0416 -0.0851  0.0398  0.0317 -0.0656
    -0.0128  0.0311 -0.0837 -0.0885 -0.0965  0.0931 -0.0942 -0.0342  0.0851  0.0435
    
    Columns 50 to 59 
    -0.0706  0.0740  0.0403  0.0486  0.0804  0.1016  0.0948  0.0042 -0.0204 -0.1151
     0.1095  0.0921 -0.1028  0.0282  0.0878  0.0996  0.1205 -0.0796 -0.0634 -0.1172
     0.1047 -0.0863  0.0562  0.0295  0.0177 -0.0250  0.0261  0.1133  0.0844  0.0866
    -0.0407  0.0486 -0.1202 -0.1043  0.0989  0.0932  0.0133  0.0651 -0.1158 -0.0456
    -0.1219  0.0920  0.0697  0.0927  0.1020  0.0391  0.0309  0.0199  0.0844  0.0428
    -0.0501  0.0589  0.0111 -0.0826  0.0056 -0.0369 -0.0911  0.1175 -0.0292  0.0318
     0.0445  0.1137  0.1123 -0.0716  0.0885 -0.0383  0.0276  0.0571  0.0976  0.0298
    -0.1082 -0.1132 -0.0977 -0.0630  0.1066  0.0418  0.0862 -0.0329 -0.0949 -0.1048
     0.0947  0.0587 -0.0304  0.0770 -0.0187  0.0003 -0.0628 -0.1068  0.1023  0.0669
    -0.0424 -0.0686 -0.0745 -0.0949 -0.0700  0.1227 -0.0021 -0.1125 -0.1001  0.0545
    
    Columns 60 to 63 
     0.0592 -0.0805 -0.0735 -0.0953
     0.0493 -0.0285  0.0179  0.0019
     0.0548  0.0819 -0.1057  0.0855
     0.0880 -0.0224  0.0091  0.0845
     0.0501 -0.0397 -0.0922  0.1050
     0.0109 -0.1045  0.0098 -0.0755
     0.1079  0.0461  0.0320 -0.0830
     0.0902  0.0743 -0.0809 -0.0330
    -0.0153  0.0420  0.0624 -0.1119
    -0.0138 -0.0618  0.1001  0.0437
    [torch.FloatTensor of size 10x64]
    
    PPP 
     0.0109
    -0.0778
    -0.0501
     0.0163
     0.0763
    -0.0792
     0.1141
    -0.0127
     0.0162
     0.0808
    [torch.FloatTensor of size 10]
    
    None
    

    关于pytorch中LSTM的可以再这里查看pytorch之LSTM

    我打印出Lstm的参数,并将它们结合pytorch的官方文档pytorch之LSTM,发现其实LSTM的这些参数都是Variables,注意到这个例子里的w和b也不只有一对,而是有两对,因为LSTM的num_layers=2,当这个值为3时就会有3对,由这里我受到启发,在改变sru的layer后,也发生了变化。由此我得出结论循环神经网络并不是只有一个神经单元,而是可以有多个,之前我一直以为只有一个。

    而sru中的参数也是以Variable的形式存在与整个模型中,可以被更新。

  • 相关阅读:
    Qt样式表都有哪些属性可以设置
    Qt之获取子部件
    PyQt样式表设置QComboBox
    Qt中QSlider的样式表设置
    Timer
    Python线程二
    python3线程启动与停止
    PyQt+Html+Js
    pyqt实现滑动开关
    Devexpress TreeList 展开和折叠当前选中节点
  • 原文地址:https://www.cnblogs.com/lindaxin/p/8052355.html
Copyright © 2020-2023  润新知