• ubuntu16.04 源码方法安装tensorflow


    参考博客:http://blog.csdn.net/zhaoyu106/article/details/52793183/,
    http://blog.csdn.net/u010900574/article/details/52201808
    由于我之前已经配置过cuda8.0和cudnn5.1.10所以不用安装了
    1、安装bazel
    点击链接: installer for your system,跳转到Bazel的下载页面:
    下载bazel-0.7.0-installer-linux-x86_64.sh到桌面,下载最新版的,不用和我的一致,然后在terminal中输入以下命令
    cd  /home/***(自己的用户名)/Desktop/###(这个命令意思是找到刚刚我们用U盘传过来的文件)
    chmod +x PATH_TO_INSTALL.SH #对.sh文件授权
    ./PATH_TO_INSTALL.SH --user #运行.sh文件
    

     2、安装第三方库

    在terminal中输入以下命令

    sudo apt-get install python-numpy swig python-dev python-wheel #安装第三方库
    sudo apt-get install git
    git clone git://github.com/numpy/numpy.git numpy 
    

     3、安装tensorflow

    在terminal中输入以下命令

    git clone https://github.com/tensorflow/tensorflow
    

     在terminal中输入以下命令:

    cd ~/tensorflow #切换到tensorflow文件夹
    ./configure #执行configure文件
    
    Do you wish to use jemalloc as the malloc implementation? [Y/n] y
    jemalloc enabled
    Do you wish to build TensorFlow with Google Cloud Platform support? [y/N] n
    No Google Cloud Platform support will be enabled for TensorFlow
    Do you wish to build TensorFlow with Hadoop File System support? [y/N] n
    No Hadoop File System support will be enabled for TensorFlow
    Do you wish to build TensorFlow with the XLA just-in-time compiler (experimental)? [y/N] n
    No XLA JIT support will be enabled for TensorFlow
    Found possible Python library paths:
      /usr/lib/python2.7/site-packages
      /usr/lib64/python2.7/site-packages
    Please input the desired Python library path to use.  Default is [/usr/lib/python2.7/site-packages]
    
    Using python library path: /usr/lib/python2.7/site-packages
    Do you wish to build TensorFlow with OpenCL support? [y/N] n
    No OpenCL support will be enabled for TensorFlow
    Do you wish to build TensorFlow with CUDA support? [y/N] y
    CUDA support will be enabled for TensorFlow
    Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: 
    Please specify the CUDA SDK version you want to use, e.g. 7.0. [Leave empty to use system default]: 8.0
    Please specify the location where CUDA 8.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: /usr/local/cuda-8.0
    

     4创建pip

    在tensorflow的根目录下,在terminal中输入以下命令:
    bazel build -c opt //tensorflow/tools/pip_package:build_pip_package
    bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
    bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
    sudo pip install /home/***(你自己的用户名)/Desktop/tensorflow-0.10.0-cp2-none-any.whl
    

     tensorflow-0.10.0-cp2-none-any.whl要根据你下载的文件名有所更改。

    5、设置tensorflow环境

    bazel build -c opt //tensorflow/tools/pip_package:build_pip_package
     # To build with GPU support:
    bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
    mkdir _python_build
    cd _python_build
    ln -s ../bazel-bin/tensorflow/tools/pip_package/build_pip_package.runfiles/org_tensorflow/* .
    ln -s ../tensorflow/tools/pip_package/* .
    python setup.py develop
    

     6、tensorflow测试

    $ python
    
    >>> import tensorflow as tf
    >>> hello = tf.constant('Hello, TensorFlow!')
    >>> sess = tf.Session()
    >>> print sess.run(hello)
    Hello, TensorFlow!
    >>> a = tf.constant(10)
    >>> b = tf.constant(32)
    >>> print sess.run(a+b)
    42
    >>>
    

     大功告成

    出现的错误
    操作

    bazel build -c opt --config=cuda //tensorflow/cc:tutorials_example_trainer
    

     报错

    ERROR: /home/yaroslavvb/tensorflow.git/tensorflow/tensorflow/core/kernels/BUILD:1080:1: undeclared inclusion(s) in rule '//tensorflow/core/kernels:cwise_op_gpu': 
    this is missing dependency dependency for following files included by 'tensorflow/core/kernels/cwise_op_gpu_floor.cu.cc':
      '/usr/local/cuda-8.0/include/cuda_runtime.h'
      '/usr/local/cuda-8.0/include/host_config.h'
      '/usr/local/cuda-8.0/include/builtin_types.h'
      '/usr/local/cuda-8.0/include/device_types.h'
      '/usr/local/cuda-8.0/include/host_defines.h'
      '/usr/local/cuda-8.0/include/driver_types.h'
      '/usr/local/cuda-8.0/include/surface_types.h'
      '/usr/local/cuda-8.0/include/texture_types.h'
    

     可以进入tensorflow/third_party/gpus/crosstool/目录,打开CROSSTOOL文件,搜索cxx_builtin_include_directory,应该有三行,在下面添加行如下
    cxx_builtin_include_directory: "/usr/local/cuda-8.0/include"

    如果出现的错误是类似的,只要将cxx_builtin_include_directory: "/usr/local/cuda-8.0/include"的文件路径改一下就可以了,亲测有效

    再次运行上一步的命令,应该就没问题了。

  • 相关阅读:
    [转]Kqueue与epoll机制
    [转]Docker中的镜像
    [转]linux awk命令详解
    [转]Linux Shell 1>/dev/null 2>&1 含义
    file_get_contents(): SSL operation failed with code 1...解决办法和stream_context_create作用
    PHP abstract与interface之间的区别
    PHP基于Redis的全局订单号id
    Eclipse for php+Xdebug,搭建php单步调试环境
    Eclipse launch configuration----Eclipse运行外部工具
    MySql 缓冲池(buffer pool) 和 写缓存(change buffer) 转
  • 原文地址:https://www.cnblogs.com/lindaxin/p/7797477.html
Copyright © 2020-2023  润新知