• 01_名词解释ODS/EDW/DM


    ODS 操作数据存储

    • 操作数据存储ODS(Operational Data Store)是数据仓库体系结构中的一个可选部分,ODS具备数据仓库的部分特征和OLTP系统的部分特征,它是“面向主题的、集成的、当前或接近当前的、不断变化的”数据。
    • ODS 操作型数据仓库,最早的数据仓库模型,是数据仓库体系结构中的一个可选部分,ODS具备数据仓库的部分特征和OLTP系统的部分特征。特点是数据模型采取了贴源设计,业务系统数据库数据结构是怎样的,ODS数据库的结构就是怎样的。所不同的是ODS数据库可以提供数据变化的历史,所以ODS数据库中每张表都会增加一个日期类型,表示数据的时点,将每天数据的变化情况都存下来,这样有利于数据的分析。
    一般ODS都设计为如下几个作用:

    1、在业务系统和数据仓库之间形成一个隔离层

    一般的数据仓库应用系统都具有非常复杂的数据来源,这些数据存放在不同的地理位置、不同的数据库、不同的应用之中,从这些业务系统对数据进行抽取并不是一件容易的事。因此,ODS用于存放从业务系统直接抽取出来的数据,这些数据从数据结构、数据之间的逻辑关系上都与业务系统基本保持一致,因此在抽取过程中极大降低了数据转化的复杂性,而主要关注数据抽取的接口、数据量大小、抽取方式等方面的问题。

    2、转移一部分业务系统细节查询的功能

    在数据仓库建立之前,大量的报表、分析是由业务系统直接支持的,在一些比较复杂的报表生成过程中,对业务系统的运行产生相当大的压力。ODS的数据从粒度、组织方式等各个方面都保持了与业务系统的一致,那么原来由业务系统产生的报表、细节数据的查询自然能够从ODS中进行,从而降低业务系统的查询压力。

    3、完成数据仓库中不能完成的一些功能

    一般来说,带有ODS的数据仓库体系结构中,DW层所存储的数据都是进行汇总过的数据,并不存储每笔交易产生的细节数据,但是在某些特殊的应用中,可能需要对交易细节数据进行查询,这时就需要把细节数据查询的功能转移到ODS来完成,而且ODS的数据模型按照面向主题的方式进行存储,可以方便地支持多维分析等查询功能。在一个没有ODS层的数据仓库应用系统体系结构中,数据仓库中存储的数据粒度是根据需要而确定的,但一般来说,最为细节的业务数据也是需要保留的,实际上也就相当于ODS,但与ODS所不同的是,这时的细节数据不是“当前、不断变化的”数据,而是“历史的,不再变化的”数据。

    DW 数据仓库

    • 数据仓库,英文名称为Data Warehouse,可简写为DW或DWH。数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。 为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。

    EDW 企业数据仓库

    • 数据仓库(DW)概念的创始人W. H.Inmon对数据仓库下了这样的定义:“数据仓库是一个面向主题的、集成的、非易失的且随时间变化的数据集合,用来支持管理人员的决策。”数据仓库将大量用于事物处理的传统数据库数据进行清理、抽取和转换,使原始数据发生了质的变化,转化为适合分析的导出型数据,并按照决策主题的需要进行重新组织。
    • 每个行业的EDW都有一个通用的数据模型,结构精简,扩展性强,应用性强,数据模型不像ODS乃样会有很大的冗余。

    BI 商业智能

    • BI软件是商业智能(Business Intelligence)软件的英文缩写。目前,商业智能通常被理解为将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具。商务智能系统中的数据来自企业其他业务系统。例如商贸型企业,其商务智能系统数据包括业务系统的订单、库存、交易账目、客户和供应商信息等,以及企业所处行业和竞争对手的数据、其他外部环境数据。而这些数据可能来自企业的CRM、SCM、进销存等业务系统。

    DM 数据集市

    • 数据集市(Data Mart),也叫数据市场,为满足特定的部门或者用户需求,按照多维的方式进行存储,包括定义维度、需要计算的指标、维度的层次等,生成面向决策分析需求的数据立方体。
    • 数据集市,迎合了专业用户群体的特殊需求,包括分析、内容、表现,以及易用性方面。
    • 数据集市,是企业级数据仓库的一个子集,主要面向部门级业务,只面向某个特定的主题。
    • 数据集市数据来源于企业范围的数据库、专业的数据仓库。

    ETL 数据仓库技术

    • ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过萃取(extract)、转置(transform)、加载(load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。
    • 获取—转换【清洗,合并,复制】–加载【事实表,维度表】
    • 维度表:【维度】从哲学角度看,人们观察、思考与表述某事物的“思维角度”,简称“维度”。例如,人们观察与思考“月亮”这个事物,可以从月亮的“内容、时间、空间”三个思维角度去描述;也可以从月亮的“载体、能量、信息”三个思维角度去描述。
      从时间角度出发,年月日这样去考虑。
    • 事实表:最终需要的数据抽取,由多条数据或者或多表总结汇成一条数据或者一个表组成的。
  • 相关阅读:
    JAVA 对象的创建与克隆
    流言粉碎机:JAVA使用 try catch 会严重影响性能
    MYSQL TIMESTAMP自动更新问题
    Innodb之索引与算法
    中缀表达式转后缀表达式并计算结果
    json数组对象和对象数组
    记一个react 使用jQuery 的规则
    docker nginx (13: Permission denied) while reading upstream
    vuecliservice electron:serve Critical dependency: the request of a dependency is an expression
    AntDesign upload 多图可拖拽排序 Demo
  • 原文地址:https://www.cnblogs.com/linbo3168/p/12868567.html
Copyright © 2020-2023  润新知