欧几里得算法
- gcd,(O(log n))
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
- lcm,(O(log n))
// 注意数据范围,过大的数要用__int128
ll lcm(ll a, ll b) {return a * b / gcd(a, b);}
- 扩展欧几里得,(log n)
ll exgcd(ll a, ll b, ll &x, ll &y) { // ax + by = gcd(a, b)
if(b == 0) {
y = 0, x = 1;
return a;
}
ll res = exgcd(b, a%b, x, y);
ll tx = x,ty = y;
x = ty;
y = tx - (a / b) * ty;
return res;
}
bool solve(ll a, ll b, ll c, ll &x, ll &y) { // ax + by = c, gcd(a, b)|c, x>=0
if(!c) {
x = y = 0;
return true;
}
ll d = exgcd(a, b, x, y);
if(c % d) return false;
a /= d, b /= d, c /= d;
ll ret = c % b;
x = x * ret;
x = x + (b - x) / b * b; // 调整此处控制x下界,x可以加上容易倍数的b
y = (c - a * x) / b;
return true;
}
欧拉定理&费马小定理
[a^bequiv egin{cases} a^{b mod varphi(p)},\,&gcd(a,\,p)=1\ a^b,&gcd(a,\,p)
e1,\,blt varphi(p)\ a^{b mod varphi(p)+varphi(p)},&gcd(a,\,p)
e1,\,bgevarphi(p) end{cases} pmod p
]
注意模数和底数不互质时的处理。
ll getphi(ll n) {
ll p = n;
for(int i = 0; 1ll * pri[i] * pri[i] < p; i++) {
if(n % pri[i] == 0) {
p = p / pri[i] * (pri[i] - 1);
while(n % pri[i] == 0) n /= pri[i];
}
}
if(n > 1) p = p / n * (n - 1);
return p;
}
乘法逆元
- 线性求逆元
// i无逆元时,inv[i]是未定义的
inv[1] = 1;
for(int i = 2; i <= n; i++) {
inv[i] = (ll)(p - p / i) * inv[p % i] % p;
}
- 扩展欧几里得
ll inv(ll a, ll p) {
ll x, y;
exgcd(a, p, x, y);
return (x % p + p) % p;
}
中国剩余定理(CRT)
// a, r下标均从1开始
// crt
ll crt(int k, ll a[], ll r[]) { // xi mod ai = ri, ai模数必须互质
ll n = 1, ans = 0;
for(int i = 1; i <= k; i++) n = n * a[i];
for(int i = 1; i <= k; i++) {
ll m = n / a[i], b, y;
exgcd(m, a[i], b, y); // b * m mod a[i] = 1
ans = (ans + r[i] * m * b % n) % n;
}
return (ans % n + n) % n;
}
// 任意模数crt
ll excrt(int n, ll a[], ll r[]) { //xi mod ai = ri, 无解时返回-1
ll res, m, x, y;
res = r[1];
m = a[1];
for(int i = 2; i <= n; i++) {
ll d = ((r[i] - res) % a[i] + a[i]) % a[i];
ll g = exgcd(m, a[i], x, y);
if(d % g) return -1;
ll k = d / g;
ll rm = lcm(a[i], m);
res = ((__int128)m * x % rm * k + res) % rm;
m = rm;
}
return (res % m + m) % m;
}
二次剩余
- cipolla,要求模数必须为奇素数,期望时间复杂度(O(log n))
namespace cipolla {
ll w;
struct num { //建立一个复数域
ll x, y;
};
num mul(num a, num b, ll p) { //复数乘法
num ans = {0, 0};
ans.x = ((a.x * b.x % p + a.y * b.y % p * w % p) % p + p) % p;
ans.y = ((a.x * b.y % p + a.y * b.x % p) % p + p) % p;
return ans;
}
ll qpow_img(num a, ll b, ll p) { //虚部快速幂
num ans = {1, 0};
while (b) {
if (b & 1) ans = mul(ans, a, p);
a = mul(a, a, p);
b >>= 1;
}
return ans.x % p;
}
ll solve(ll n, ll p) { // x^2 mod p = n
n %= p;
if (p == 2) return n;
if (qpow(n, (p - 1) / 2, p) == p - 1) return -1;
ll a;
while (1) { //生成随机数再检验找到满足非二次剩余的a
a = rand() % p;
w = ((a * a % p - n) % p + p) % p;
if (qpow(w, (p - 1) / 2, p) == p - 1) break;
}
num x = {a, 1};
return qpow_img(x, (p + 1) / 2, p);
}
}
- BSGS,求任意次开根,即求(x^aequiv b mod p),(p)为奇素数。时间复杂度(O(sqrt{n}))
ll getroot(ll p) { // p是素数,求p的原根
ll phi = p - 1, tp = phi;
vector<ll> factors;
for(int i = 2; 1ll * i * i <= phi; i++) {
if(tp == 1) break;
if(tp % i == 0) {
while(tp % i == 0) tp /= i;
factors.push_back(i);
}
}
ll g = 2;
while(g < p) {
bool ok = true;
for(ll d : factors) {
if(qpow(g, phi / d, p) == 1) {
ok = false;
break;
}
}
if(ok) return g;
g++;
}
return -1;
}
vector<ll> ans;
void solve(ll a, ll b, ll p) { // 获得x^a % p = b所有解,保存在数组ans中
if(b == 0) {
ans.push_back(0);
return ;
}
ll g = getroot(p), phi = p - 1;
ll d = phi / gcd(a, phi);
ll c = bsgs(qpow(g, a, p), b, p);
if(c == -1) return ;
for(ll i = c % d; i < phi; i += d) {
ans.push_back(qpow(g, i, p));
}
sort(ans.begin(), ans.end());
}
离散对数
- exbsgs,求解(a^xequiv bmod p),其中(a)不必和(p)互质,时间复杂度(O(sqrt{n}))。
ll inv(ll a, ll p) {
ll x, y;
exgcd(a, p, x, y);
return (x % p + p) % p;
}
map<ll, int> ex;
ll bsgs(ll a, ll b, ll p) { // a^x % p = b; a, p必须互质
ex.clear();
int sqp = ceil(sqrt(p));
ll pab = b % p, pw = qpow(a, sqp, p), pa = pw;
for(int i = 0; i <= sqp; i++) {
ex[pab] = i;
pab = pab * a % p;
}
for(int i = 1; i <= sqp; i++) {
if(ex.count(pa)) {
ll res = 1ll * i * sqp - ex[pa];
return res;
}
pa = pa * pw % p;
}
return -1;
}
ll exbsgs(ll a, ll b, ll p) {
b %= p;
a %= p;
ll d = 1, tp = p, tb = b, pwa = 1;
int k = 0;
while(tb != 1 && (d = gcd(a, tp)) != 1) {
if(b % d != 0) return -1;
if(tb % d != 0) break;
tp /= d;
tb /= d;
k++;
}
for(int i = 0; i <= k; i++) {
if(pwa == b) return i;
pwa = pwa * a % p;
}
if(gcd(a, tp) != 1) return -1;
ll res = bsgs(a % tp, b * inv(qpow(a, k, tp), tp) % tp, tp);
if(res == -1) return -1;
return res + k;
}
卢卡斯定理
- 递推式求组合数
for(int i = 1; i <= n; i++) C[i][0] = C[i][i] = 1;
for(int i = 1; i <= n; i++) {
for(int j = 1; j < i; j++) {
C[i][j] = (C[i-1][j-1] + C[i-1][j]) % M; // M = mod
}
}
- 公式法求组合数,注意若模数为(p)。当(n< p)可以用公式法,(nge p)时请使用其他方法,否则可能会出现模数为0导致结果出错。
[C(n,m)=frac{n!}{(n-m)!m!}
]
- 卢卡斯定理:求(C(n, m)mod p),(p)为素数,时间复杂度(O(f(p) + g(p)log n))。其中(f(p))代表预处理值域为前(p)组合数的复杂度,(g(p))为计算单个组合数的复杂度。若直接暴力计算,时间复杂度(O(plog p)),
ll lucas(ll n, ll m, ll p) {
if(m == 0) return 1;
return C(n % p, m % p, p) * lucas(n / p, m / p, p) % p;
}
- 扩展卢卡斯定理:求(C(n, m)mod p),(p)为任意模数,时间复杂度(O(plog p))。预处理+p固定+若干询问:(O(p+Tlog p)),(T)为询问次数。
ll calc(ll n, ll x, ll P) {
if(!n) return 1;
ll s = 1;
for(ll i = 1; i <= P; i++) // 此处可以预处理
if(i % x) s = s * i % P;
s = qpow(s, n / P, P);
for(ll i = 1; i <= n % P; i++) // 此处可以预处理
if(i % x) s = i * s % P;
return s * calc(n / x, x, P) % P;
}
ll multilucas(ll n, ll m, ll x, ll P) {
int cnt = 0;
for(ll i = n; i; i /= x) cnt += i / x;
for(ll i = m; i; i /= x) cnt -= i / x;
for(ll i = n - m; i; i /= x) cnt -= i / x;
// inv使用exgcd的
return qpow(x, cnt, P) % P * calc(n, x, P) % P * inv(calc(m, x, P), P) % P * inv(calc(n - m, x, P), P) % P;
}
ll exlucas(ll n, ll m, ll P) { // n >= m, C(n, m)
if(m > n) return 0;
int cnt = 0;
ll p[20], a[20];
for(ll i = 2; i * i <= P; i++) {
if(P % i == 0) {
p[++cnt] = 1;
while (P % i == 0) p[cnt] = p[cnt] * i, P /= i;
a[cnt] = multilucas(n, m, i, p[cnt]);
}
}
if(P > 1) p[++cnt] = P, a[cnt] = multilucas(n, m, P, P);
return excrt(cnt, p, a);
}