- (a_n = n^2)
首先从一个等式入手:
[(n+1)^3 - n^3 = 3n^2 + 3n + 1
]
那么直接求和显然也成立了:
[sum_{i=1}^n (i+1)^3 - sum_{i=1}^n i^3 = 3sum_{i=1}^n i^2 + 3 sum_{i=1}^n i + sum_{i=1}^n
]
左边直接错位相减,右边第一项为所求,设为(S_n),第二项等差数列求和(frac{n(n+1)}{2}),第三项就是(n).
[(n+1)^3 - 1 = 3S_n + frac{3n(n+1)}{2} + n
]
[S_n = frac{n(n+1)(2n+1)}{6}
]
2.(a_n = n^3)
和上一个差不多:
[(n+1)^4 - n^4 = 4n^3 +6n^2 + 4n + 1
]
然后几乎完全一致的操作一下:
[sum_{i=1}^n (i+1)^4 - sum_{i=1}^n i^4 = 4sum_{i=1}^n i^3 + 6sum_{i=1}^n i^2 + 4sum_{i=1}^n i + sum_{i=1}^n
]
[S_n = (frac{n(n+1)}{2})^2
]
(To be continued)