• 213. House Robber II


    You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

    Example 1:

    1
    2
    3
    4
    Input: [2,3,2]
    Output: 3
    Explanation: You cannot rob house 1 (money = 2) and then rob house 3 (money = 2),
      because they are adjacent houses.

    Example 2:

    1
    2
    3
    4
    Input: [1,2,3,1]
    Output: 4
    Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
      Total amount you can rob = 1 + 3 = 4.

    Solution

    House Robber I的不同点就是房子是围城一个圈的,即若偷第一个房子,则最后一个房子不能偷了

    第一个房子偷与不偷的两种情况如下:

    1. 偷第一个房子,则最后一个不能偷了,即nums[2:-1]按照House Robber I求解, 结果再加上nums[0]
    2. 不偷第一个房子,后面nums[1:]按House Robber I求解

    上面两种情况的最大值即为解。

    Python:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    大专栏  213. House Robber IIn class="line">12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    class :
    def rrob(self, nums, i, j,dc):
    if (i,j) in dc:
    return dc[(i,j)]
    length = j-i
    if length == 0 :
    return 0
    if length <= 2:
    return max(nums[i:j])
    ans = max(self.rrob(nums,i+2,j,dc)+nums[i],self.rrob(nums,i+1,j,dc))
    dc[(i,j)] = ans
    return ans
    def rob(self, nums: List[int]) -> int:
    length = len(nums)
    if length == 0 :
    return 0
    if length<=3:
    return max(nums)
    ans = 0
    dc = dict()
    ans = max(self.rrob(nums,2,length-1,dc)+nums[0],self.rrob(nums,1,length,dc))
    return ans
  • 相关阅读:
    Windows 7安装 OneDrive
    MySQL8.0降级为MySQL5.7
    Windows和Linux下安装Rsync
    Jenkins持续集成工具安装
    Pure-Ftpd安装配置
    redis安装配置
    Tcp粘包处理
    .Net Core Socket 压力测试
    使用RpcLite构建SOA/Web服务(Full .Net Framework)
    使用RpcLite构建SOA/Web服务
  • 原文地址:https://www.cnblogs.com/lijianming180/p/12410267.html
Copyright © 2020-2023  润新知