• IO模型


    IO模型

    同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?这个问题其实不同的人给出的答案都可能不同,比如wiki,就认为asynchronous IO和non-blocking IO是一个东西。这其实是因为不同的人的知识背景不同,并且在讨论这个问题的时候上下文(context)也不相同。所以,为了更好的回答这个问题,先限定一下本文的上下文。
    本文讨论的背景是Linux环境下的network IO。

    Stevens在文章中一共比较了五种IO Model:

    1. blocking IO
    2. nonblocking IO
    3.IO multiplexing
    4.signal driven IO
    5.asynchronous IO
    

    由于signal driven IO在实际中并不常用,所以我这只提及剩下的四种IO Model。
    再说一下IO发生时涉及的对象和步骤。
    对于一个network IO (这里我们以read举例),它会涉及到两个系统对象,一个是调用这个IO的process (or thread),另一个就是系统内核(kernel)。当一个read操作发生时,它会经历两个阶段:

    • 等待数据准备 (Waiting for the data to be ready)

    • 将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)

    记住这两点很重要,因为这些IO Model的区别就是在两个阶段上各有不同的情况。

    blocking IO (阻塞IO)

    在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:
    image

    当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据。对于network io来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的UDP包),这个时候kernel就要等待足够的数据到来。而在用户进程这边,整个进程会被阻塞。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。
    所以,blocking IO的特点就是在IO执行的两个阶段都被block了。

    non-blocking IO (非阻塞IO)

    linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:

    image

    从图中可以看出,当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存,然后返回。所以,用户进程其实是需要不断的主动询问kernel数据好了没有。

    注意:

    在网络IO时候,非阻塞IO也会进行recvform系统调用,检查数据是否准备好,与阻塞IO不一样,”非阻塞将大的整片时间的阻塞分成N多的小的阻塞, 所以进程不断地有机会 ‘被’ CPU光顾”。即每次recvform系统调用之间,cpu的权限还在进程手中,这段时间是可以做其他事情的,

    也就是说非阻塞的recvform系统调用调用之后,进程并没有被阻塞,内核马上返回给进程,如果数据还没准备好,此时会返回一个error。进程在返回之后,可以干点别的事情,然后再发起recvform系统调用。重复上面的过程,循环往复的进行recvform系统调用。这个过程通常被称之为轮询。轮询检查内核数据,直到数据准备好,再拷贝数据到进程,进行数据处理。需要注意,拷贝数据整个过程,进程仍然是属于阻塞的状态。

    import time
    import socket
    sk = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    sk.setsockopt
    sk.bind(('127.0.0.1',6667))
    sk.listen(5)
    sk.setblocking(False)
    while True:
        try:
            print ('waiting client connection .......')
            connection,address = sk.accept()   # 进程主动轮询
            print("+++",address)
            client_messge = connection.recv(1024)
            print(str(client_messge,'utf8'))
            connection.close()
        except Exception as e:
            print (e)
            time.sleep(4)
    
    #############################client
    
    import time
    import socket
    sk = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    
    while True:
        sk.connect(('127.0.0.1',6667))
        print("hello")
        sk.sendall(bytes("hello","utf8"))
        time.sleep(2)
        break
        
    

    优点:能够在等待任务完成的时间里干其他活了(包括提交其他任务,也就是 “后台” 可以有多个任务在同时执行)。

    缺点:任务完成的响应延迟增大了,因为每过一段时间才去轮询一次read操作,而任务可能在两次轮询之间的任意时间完成。这会导致整体数据吞吐量的降低。

    IO multiplexing(IO多路复用)

    IO multiplexing这个词可能有点陌生,但是如果我说select,epoll,大概就都能明白了。有些地方也称这种IO方式为event driven IO。我们都知道,select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:

    image

    对于多路复用,也就是轮询多个socket。钓鱼的时候,我们雇了一个帮手,他可以同时抛下多个钓鱼竿,任何一杆的鱼一上钩,他就会拉杆。他只负责帮我们钓鱼,并不会帮我们处理,所以我们还得在一帮等着,等他把收杆。我们再处理鱼。多路复用既然可以处理多个I/O,也就带来了新的问题,多个I/O之间的顺序变得不确定了,当然也可以针对不同的编号。

    多路复用的特点是通过一种机制一个进程能同时等待IO文件描述符,内核监视这些文件描述符(套接字描述符),其中的任意一个进入读就绪状态,select, poll,epoll函数就可以返回。对于监视的方式,又可以分为 select, poll, epoll三种方式。
    了解了前面三种模式,在用户进程进行系统调用的时候,他们在等待数据到来的时候,处理的方式不一样,直接等待,轮询,select或poll轮询,第一个过程有的阻塞,有的不阻塞,有的可以阻塞又可以不阻塞。当时第二个过程都是阻塞的。从整个I/O过程来看,他们都是顺序执行的,因此可以归为同步模型(asynchronous)。都是进程主动向内核检查。

    #***********************server.py
    
    import socket
    import select
    sk=socket.socket()
    sk.bind(("127.0.0.1",8800))
    sk.listen(5)
    sk.setblocking(False)
    inputs=[sk,]
    
    while True:
        r,w,e=select.select(inputs,[],[],5)
        print(len(r))
    
        for obj in r:
            if obj==sk:
                conn,add=obj.accept()
                print("conn:",conn)
                inputs.append(conn)
            else:
    
                data_byte=obj.recv(1024)
                print(str(data_byte,'utf8'))
                if not data_byte:
                    inputs.remove(obj)
                    continue
                inp=input('回答%s: >>>'%inputs.index(obj))
                obj.sendall(bytes(inp,'utf8'))
    
        print('>>',r)
    
    
    #***********************client.py
    
    import socket
    sk=socket.socket()
    sk.connect(('127.0.0.1',8802))
    
    while True:
        inp=input(">>>>")   # how much one night?
        sk.sendall(bytes(inp,"utf8"))
        data=sk.recv(1024)
        print(str(data,'utf8'))
        
    
    Asynchronous I/O(异步IO)

    相对于同步I/O,异步I/O不是顺序执行。用户进程进行aio_read系统调用之后,无论内核数据是否准备好,都会直接返回给用户进程,然后用户态进程可以去做别的事情。等到socket数据准备好了,内核直接复制数据给进程,然后从内核向进程发送通知。I/O两个阶段,进程都是非阻塞的。

    image

    比之前的钓鱼方式不一样,这一次我们雇了一个钓鱼高手。他不仅会钓鱼,还会在鱼上钩之后给我们发短信,通知我们鱼已经准备好了。我们只要委托他去抛竿,然后就能跑去干别的事情了,直到他的短信。我们再回来处理已经上岸的鱼。

    IO模型比较分析

    到目前为止,已经将四个IO Model都介绍完了。现在回过头来回答最初的那几个问题:blocking和non-blocking的区别在哪,synchronous IO和asynchronous IO的区别在哪。
    先回答最简单的这个:blocking vs non-blocking。前面的介绍中其实已经很明确的说明了这两者的区别。调用blocking IO会一直block住对应的进程直到操作完成,而non-blocking IO在kernel还准备数据的情况下会立刻返回。

    在说明synchronous IO和asynchronous IO的区别之前,需要先给出两者的定义。Stevens给出的定义(其实是POSIX的定义)是这样子的:
    A synchronous I/O operation causes the requesting process to be blocked until that I/O operationcompletes;
    An asynchronous I/O operation does not cause the requesting process to be blocked;
    两者的区别就在于synchronous IO做”IO operation”的时候会将process阻塞。按照这个定义,之前所述的blocking IO,non-blocking IO,IO multiplexing都属于synchronous IO。有人可能会说,non-blocking IO并没有被block啊。这里有个非常“狡猾”的地方,定义中所指的”IO operation”是指真实的IO操作,就是例子中的recvfrom这个system call。non-blocking IO在执行recvfrom这个system call的时候,如果kernel的数据没有准备好,这时候不会block进程。但是,当kernel中数据准备好的时候,recvfrom会将数据从kernel拷贝到用户内存中,这个时候进程是被block了,在这段时间内,进程是被block的。而asynchronous IO则不一样,当进程发起IO 操作之后,就直接返回再也不理睬了,直到kernel发送一个信号,告诉进程说IO完成。在这整个过程中,进程完全没有被block。

    各个IO Model的比较如图所示:

    image

    经过上面的介绍,会发现non-blocking IO和asynchronous IO的区别还是很明显的。在non-blocking IO中,虽然进程大部分时间都不会被block,但是它仍然要求进程去主动的check,并且当数据准备完成以后,也需要进程主动的再次调用recvfrom来将数据拷贝到用户内存。而asynchronous IO则完全不同。它就像是用户进程将整个IO操作交给了他人(kernel)完成,然后他人做完后发信号通知。在此期间,用户进程不需要去检查IO操作的状态,也不需要主动的去拷贝数据。

    selectors模块
    import selectors
    import socket
    
    sel = selectors.DefaultSelector()
    
    def accept(sock, mask):
        conn, addr = sock.accept()  # Should be ready
        print('accepted', conn, 'from', addr)
        conn.setblocking(False)
        sel.register(conn, selectors.EVENT_READ, read)
    
    def read(conn, mask):
        data = conn.recv(1000)  # Should be ready
        if data:
            print('echoing', repr(data), 'to', conn)
            conn.send(data)  # Hope it won't block
        else:
            print('closing', conn)
            sel.unregister(conn)
            conn.close()
    
    sock = socket.socket()
    sock.bind(('localhost', 1234))
    sock.listen(100)
    sock.setblocking(False)
    sel.register(sock, selectors.EVENT_READ, accept)
    
    while True:
        events = sel.select()
        for key, mask in events:
            callback = key.data
            callback(key.fileobj, mask)
    
    
  • 相关阅读:
    (转载)什么才是富人思维
    linux上的vs code的C++环境搭建
    [转载]双线性插值简介
    刻意练习行动手册
    滑动窗口技巧
    [转载]用于深入思考的小工具
    CF632E Thief in a Shop
    BZOJ1497 最大获利
    UVA10779 Collectors Problem
    洛谷P4311 士兵占领
  • 原文地址:https://www.cnblogs.com/lijian-22huxiaoshan/p/7218442.html
Copyright © 2020-2023  润新知