• CS231n Solver.py 详解


    Solver是一个类,该类用于接收数据与标签,对权值进行相应求解,在solver类中调整一些超参数以达到最好的训练效果。

    成员函数

    初始化函数

     1 def __init__(self, model, data, **kwargs):
     2     """
     3     Construct a new Solver instance.
     4     
     5     Required arguments:
     6     - model: A model object conforming to the API described above
     7     - data: A dictionary of training and validation data with the following:
     8       'X_train': Array of shape (N_train, d_1, ..., d_k) giving training images
     9       'X_val': Array of shape (N_val, d_1, ..., d_k) giving validation images
    10       'y_train': Array of shape (N_train,) giving labels for training images
    11       'y_val': Array of shape (N_val,) giving labels for validation images
    12       
    13     Optional arguments:
    14     - update_rule: A string giving the name of an update rule in optim.py.
    15       Default is 'sgd'.
    16     - optim_config: A dictionary containing hyperparameters that will be
    17       passed to the chosen update rule. Each update rule requires different
    18       hyperparameters (see optim.py) but all update rules require a
    19       'learning_rate' parameter so that should always be present.
    20     - lr_decay: A scalar for learning rate decay; after each epoch the learning
    21       rate is multiplied by this value.
    22     - batch_size: Size of minibatches used to compute loss and gradient during
    23       training.
    24     - num_epochs: The number of epochs to run for during training.
    25     - print_every: Integer; training losses will be printed every print_every
    26       iterations.
    27     - verbose: Boolean; if set to false then no output will be printed during
    28       training.
    29     """
    30     self.model = model
    31     self.X_train = data['X_train']
    32     self.y_train = data['y_train']
    33     self.X_val = data['X_val']
    34     self.y_val = data['y_val']
    35     
    36     # Unpack keyword arguments
    37     self.update_rule = kwargs.pop('update_rule', 'sgd')
    38     self.optim_config = kwargs.pop('optim_config', {})
    39     self.lr_decay = kwargs.pop('lr_decay', 1.0)
    40     self.batch_size = kwargs.pop('batch_size', 100)
    41     self.num_epochs = kwargs.pop('num_epochs', 10)
    42 
    43     self.print_every = kwargs.pop('print_every', 100)
    44     self.verbose = kwargs.pop('verbose', True)
    45 
    46     # Throw an error if there are extra keyword arguments
    47     if len(kwargs) > 0:
    48       extra = ', '.join('"%s"' % k for k in kwargs.keys())
    49       raise ValueError('Unrecognized arguments %s' % extra)
    50 
    51     # Make sure the update rule exists, then replace the string
    52     # name with the actual function
    53     if not hasattr(optim, self.update_rule):
    54       raise ValueError('Invalid update_rule "%s"' % self.update_rule)
    55     self.update_rule = getattr(optim, self.update_rule)
    56 
    57     self._reset()

    初始化函数接收的变量有:

    (1)模型model,这本是一个类对象,定义了网络的结构特征,和数据,优化方法等没有关系,就是单纯的一个网络结构,包含了网络前向后向的计算函数

    (2)数据data,这是一个结构体,包含了训练集:X_train。验证集X_val。训练标签:y_train。验证标签:y_val

    (3)第三个参数**kwargs是指将输入的量写成一个字典的形式。在初始化函数中会依次进行pop,如果没有设定某些值就赋予一个默认值

    重置函数

     1 def _reset(self):
     2     """
     3     Set up some book-keeping variables for optimization. Don't call this
     4     manually.
     5     """
     6     # Set up some variables for book-keeping
     7     self.epoch = 0
     8     self.best_val_acc = 0
     9     self.best_params = {}
    10     self.loss_history = []
    11     self.train_acc_history = []
    12     self.val_acc_history = []
    13 
    14     # Make a deep copy of the optim_config for each parameter
    15     self.optim_configs = {}
    16     for p in self.model.params:
    17       d = {k: v for k, v in self.optim_config.iteritems()}
    18       self.optim_configs[p] = d

    重置函数对一些solver类中的变量进行了重置。特别注意的是新建了一个

    optim_configs字典来存储优化的参数,之前的优化参数保存在self.optim_config字典中,这两个是完全不一样的!!

    _step函数

     1 def _step(self):
     2     """
     3     Make a single gradient update. This is called by train() and should not
     4     be called manually.
     5     """
     6     # Make a minibatch of training data
     7     num_train = self.X_train.shape[0] %确定有多少个训练集样本
     8     batch_mask = np.random.choice(num_train, self.batch_size) % 从中随机选择出batch_size这么多个
     9     X_batch = self.X_train[batch_mask] % 从训练集中截取
    10     y_batch = self.y_train[batch_mask] % 截取对应的标志
    11 
    12     # Compute loss and gradient %计算损失函数和梯度
    13     loss, grads = self.model.loss(X_batch, y_batch) % 调用模型的loss函数进行计算
    14     self.loss_history.append(loss) % 将loss值存入一个向量中,后面会plot出来。注意每一个loss都是用一个batch这么多数据求出来的
    15 
    16     # Perform a parameter update
    17     for p, w in self.model.params.iteritems():
    18       dw = grads[p]
    19       config = self.optim_configs[p]
    20       next_w, next_config = self.update_rule(w, dw, config)% 注意这里!!,之前使用过getattr函数,所以成了一个函数
    21       self.model.params[p] = next_w
    22       self.optim_configs[p] = next_config

    check_accuracy函数

     1 def check_accuracy(self, X, y, num_samples=None, batch_size=100):
     2     """
     3     Check accuracy of the model on the provided data.
     4     
     5     Inputs:
     6     - X: Array of data, of shape (N, d_1, ..., d_k)
     7     - y: Array of labels, of shape (N,)
     8     - num_samples: If not None, subsample the data and only test the model
     9       on num_samples datapoints.
    10     - batch_size: Split X and y into batches of this size to avoid using too
    11       much memory.
    12       
    13     Returns:
    14     - acc: Scalar giving the fraction of instances that were correctly
    15       classified by the model.
    16     """
    17     
    18     # Maybe subsample the data
    19     N = X.shape[0] % 输入例子的个数
    20     if num_samples is not None and N > num_samples: % 例子太多随机抽取一些子类
    21       mask = np.random.choice(N, num_samples)
    22       N = num_samples
    23       X = X[mask] % 随机抽取一些子例子
    24       y = y[mask]
    25 
    26     # Compute predictions in batches
    27     num_batches = N / batch_size % 看看N可以分成几个batch
    28     if N % batch_size != 0: %如果不能整除
    29       num_batches += 1 % 分成的份数加1
    30     y_pred = [] %预测值
    31     for i in xrange(num_batches): %对每一份例子进行循环
    32       start = i * batch_size % 选出当前的例子:这是开头
    33       end = (i + 1) * batch_size % 选出当前的例子: 这是结尾
    34       scores = self.model.loss(X[start:end]) % 对开头结尾之间的例子进行预测
    35       y_pred.append(np.argmax(scores, axis=1)) %将预测后的值取最大值代表该例子的类别,并链接
    36     y_pred = np.hstack(y_pred) %将所有的预测合在一起
    37     acc = np.mean(y_pred == y) % 求一个平均,做为准确率
    38 
    39     return acc % 返回准确率

    之所以我们分成batch来求,然后合在一起,是为了防止例子过多,内存装不下。

    train函数

     1 def train(self):
     2     """
     3     Run optimization to train the model.
     4     """
     5     num_train = self.X_train.shape[0] % 读取训练的例子的个数
     6     iterations_per_epoch = max(num_train / self.batch_size, 1) % 在下面进行解释
     7     num_iterations = self.num_epochs * iterations_per_epoch
     8 
     9     for t in xrange(num_iterations): % 对每一个iteration进行循环!!
    10       self._step() % 更新一下。每次更新都是从所有例子中,抽取batch_size个例子,所以batch越小,要想覆盖所有的数据集
    所需要的迭代次数越多,也就解释了上面的iterations_per_epoch的来源
    11 12 # Maybe print training loss 13 if self.verbose and t % self.print_every == 0: % 在计算过程中观察中间结果, 14 print '(Iteration %d / %d) loss: %f' % ( %可见print_every后面是迭代的次数 15 t + 1, num_iterations, self.loss_history[-1]) % 不是epoch的次数 16 17 # At the end of every epoch, increment the epoch counter and decay the 18 # learning rate. 19 epoch_end = (t + 1) % iterations_per_epoch == 0 由于每个epoch是由一些iteration组成 20 if epoch_end: %如果到达了足够多的iteration,也就是epoch结束了 21 self.epoch += 1 % epoch加 1 22 for k in self.optim_configs: % 所有的learning_rate都要decay 23 self.optim_configs[k]['learning_rate'] *= self.lr_decay 24 25 # Check train and val accuracy on the first iteration, the last 26 # iteration, and at the end of each epoch. 27 first_it = (t == 0) % 在第一个和最后一个iteration,以及epoch结束时检查acc 28 last_it = (t == num_iterations + 1) % 29 if first_it or last_it or epoch_end: % 计算train和val的acc 30 train_acc = self.check_accuracy(self.X_train, self.y_train, 31 num_samples=1000) 32 val_acc = self.check_accuracy(self.X_val, self.y_val) 33 self.train_acc_history.append(train_acc)% 将两个的acc进行记录 34 self.val_acc_history.append(val_acc) 35 36 if self.verbose: 37 print '(Epoch %d / %d) train acc: %f; val_acc: %f' % ( 38 self.epoch, self.num_epochs, train_acc, val_acc) 39 40 # Keep track of the best model 41 if val_acc > self.best_val_acc: 42 self.best_val_acc = val_acc 43 self.best_params = {} 44 for k, v in self.model.params.iteritems(): 45 self.best_params[k] = v.copy() 46 47 # At the end of training swap the best params into the model 48 self.model.params = self.best_params

    iterations_per_epoch和num_iterations比较奇怪

    (1)iterations_per_epoch:用训练集中例子的个数除以batch的个数,如果小于1就取1.

    比如训练集有10000个例子,一个batch取100个例子,那么该变量为100。代表在一个epoch中迭代100次?

    比如训练集有10000个例子,一个batch取50个例子,那么改变量为200, 代表在一个epoch中迭代200次?

    一个batch越小,一个epoch中迭代的次数越大。

    (2)num_iterations:用self.num_epochs的个数,乘以上面的每个epoch中迭代的次数,就是总的迭代数。

    (3)在每一个epoch结束的时候,对learning_rate进行decay

    打法

  • 相关阅读:
    Redis接口限流
    CentOS7以下DNS失效问题
    Vue的安装与使用
    使用 REDIS保存SESSION信息
    ThinkPHP 阿里云图片上传
    Laravel6.0+easywechat4.1获取用户授权例子与分享示例
    1.oracle创建本地数据库步骤及导入数据
    16、React Native实战之TextInput组件
    14.React Native实战之Navigator组件初探
    13.React Native实战之Text组件
  • 原文地址:https://www.cnblogs.com/lijiajun/p/5582789.html
Copyright © 2020-2023  润新知