• 如何使用gcc编译器


    开始...

    首先,我们应该知道如何调用编译器。实际上,这很简单。我们将从那个著名的第一个C程序开始。

    #include <stdio.h>
    
    int main()
    
    {
    
      printf("Hello World!
    ");
    
    }
    View Code

    把这个文件保存为lxy.c,保存到当前目录下,在命令行下编译它:

    gcc  game.c

    在默认情况下,C编译器将生成一个名为 a.out 的可执行文件。 你可以键入如下命令运行它:

    a.out

    Hello World

    每一次编译程序时,新的 a.out 将覆盖原来的程序。你无法知道是哪个 程序创建了a.out。我们可以通过使用 -o 编译选项:

    1. gcc –o lxy lxy.c  //对文件进行编译连接,-o选项指定创建的可执行文件名称
    2.  ./lxy                    //运行刚才生成的lxy程序
    3.  Hello World!    //程序输出

    看起来上面生成可执行文件的过程中,像是一步就完成了,但是实际上它要经历4个步骤:

    下一步为我们的lxy编写一个头文件。头文件把数据类型和函数声明集中到了一处。 这可以保证数据结构定义的一致性,以便程序的每一部分都能以同样的方式看待一切事情。

    #ifndef DECK_H
    
    #define DECK_H
    
    #define DECKSIZE 52
    
    typedef struct deck_t
    
    {
    
      int card[DECKSIZE];
    
      /* number of cards used */
    
      int dealt;
    
    }deck_t;
    
    #endif /* DECK_H */
    View Code

    把这个文件保存为 deck.h。只能编译 .c 文件, 所以我们必须修改 lxy.c。即:

    #include <stdio.h>
    
    #include  "deck.h"
    
    int main()
    
    {
    
      printf("Hello World!
    ");
    
      deck_t deck;
    
    }
    View Code

    gcc -o lxy lxy .c

    如果没有错误,就没有问题。如果编译不能通过,那么就修改它直到能通过为止。

    预编译

      编译器是怎么知道 deck_t 类型是什么的呢?因为在预编译期间, 它实际上把"deck.h"文件复制到了"lxy.c"文件中。源代码中的预编译指示以"#"为前缀。 你可以通过在gcc后加上 -E 选项来调用预编译器。

    gcc -E -o game_precompile.txt game.c

    wc -l game_precompile.txt

      3199 game_precompile.txt

    几乎有3200行的输出!其中大多数来自 stdio.h 包含文件,但是如果 你查看这个文件的话,我们的声明也在那里。如果你不用 -o 选项指定 输出文件名的话,它就输出到控制台。预编译过程通过完成三个主要任务给了代码很大的 灵活性。

    1. 把"include"的文件拷贝到要编译的源文件中。
    2. 用实际值替代"define"的文本。
    3. 在调用宏的地方进行宏替换。

    这就使你能够在整个源文件中使用符号常量(即用DECKSIZE表示一付牌中的纸牌数量), 而符号常量是在一个地方定义的,如果它的值发生了变化,所有使用符号常量的地方 都能自动更新。在实践中,你几乎不需要单独使用 -E 选项,而是让它 把输出传送给编译器。

    编译

      作为一个中间步骤,gcc把你的代码翻译成汇编语言。它一定要这样做,它必须通过分析 你的代码搞清楚你究竟想要做什么。如果你犯了语法错误,它就会告诉你,这样编译就失败了。 人们有时会把这一步误解为整个过程。但是,实际上还有许多工作要gcc去做呢。

    汇编

    as 把汇编语言代码转换为目标代码。事实上目标代码并不能在CPU上运行, 但它离完成已经很近了。编译器选项 -c 把 .c 文件转换为以 .o 为扩展名 的目标文件。 如果我们运行

    gcc -c lxy.c

      我们就自动创建了一个名为lxy.o的文件。这里我们碰到了一个重要的问题。我们可以用任意一个 .c 文件创建一个目标文件。正如我们在下面所看到的,在连接步骤中我们可以把这些目标文件组合成可执行文件。让我们继续介绍我们的例子。因为我们正在编写一个纸牌游戏,我们已经把一付牌定义为 deck_t,我们将编写一个洗牌函数。 这个函数接受一个指向deck类型的指针,并把一付随机的牌装入deck类型。它使用'drawn' 数组跟踪记录那些牌已经用过了。这个具有DECKSIZE个元素的数组可以防止我们重复使用 一张牌。

    #include <stdlib.h>
    
    #include <stdio.h>
    
    #include <time.h>
    
    #include "deck.h"
    
     
    
    static time_t seed = 0;
    
     
    
    void shuffle(deck_t *pdeck)
    
    {
    
      /* Keeps track of what numbers have been used */
    
      int drawn[DECKSIZE] = {0};
    
      int i;
    
     
    
      /* One time initialization of rand */
    
      if(0 == seed)
    
      {
    
        seed = time(NULL);
    
        srand(seed);
    
      }
    
      for(i = 0; i < DECKSIZE; i++)
    
      {
    
        int value = -1;
    
        do
    
        {
    
          value = rand() % DECKSIZE;
    
        }
    
        while(drawn[value] != 0);
    
     
    
        /* mark value as used */
    
        drawn[value] = 1;
    
     
    
        /* debug statement */
    
        printf("%i
    ", value);
    
        pdeck->card[i] = value;
    
      }
    
      pdeck->dealt = 0;
    
      return;
    
    }
    View Code

      把这个文件保存为 shuffle.c。我们在这个代码中加入了一条调试语句, 以便运行时,能输出所产生的牌号。这并没有为我们的程序添加功能,因为我们的游戏还在初级阶段,我们没有别的办法确定我们的函数是否实现了我们要求的功能。使用那条printf语句,我们就能准确 地知道现在究竟发生了什么,以便在开始下一阶段之前我们知道牌已经洗好了。在我们 对它的工作感到满意之后,我们可以把那一行语句从代码中删掉。这种调试程序的技术 看起来很粗糙,但它使用最少的语句完成了调试任务。

    请注意两个问题:

    1. 我们用传址方式传递参数,你可以从'&'(取地址)操作符看出来。这把变量的机器地址 传递给了函数,因此函数自己就能改变变量的值。也可以使用全局变量编写程序,但是应该 尽量少使用全局变量。指针是C的一个重要组成部分,你应该充分地理解它。
    2. 我们在一个新的 .c 文件中使用函数调用。操作系统总是寻找名为'main'的函数,并从 那里开始执行。 shuffle.c 中没有'main'函数,因此不能编译为独立的可执行文件。 我们必须把它与另一个具有'main'函数并调用'shuffle'的程序组合起来。

    运行命令

    gcc -c shuffle.c

    并确定它创建了一个名为 shuffle.o 的新文件。编辑lxy.c文件,在第7行,在 deck_t类型的变量 deck 声明之后,加上下面这一行:

    shuffle(&deck);

    现在,如果我们还象以前一样创建可执行文件,我们就会得到一个错误

    gcc -o lxy lxy.c

    /tmp/ccmiHnJX.o: In function `main':

    /tmp/ccmiHnJX.o(.text+0xf): undefined reference to `shuffle'

    collect2: ld returned 1 exit status

      编译成功了,因为我们的语法是正确的。但是连接步骤却失败了,因为 我们没有告诉编译器'shuffle'函数在哪里。 那么,到底什么是连接?我们怎样告诉编译器到哪里寻找这个函数呢?

    连接

      连接器ld,使用下面的命令,接受前面由 as 创建的目标文件并把它转换为可执行文件gcc -o lxy lxy.o shuffle.o这将把两个目标文件组合起来并创建可执行文件 lxy。

      连接器从shuffle.o目标文件中找到 shuffle 函数,并把它包括进可执行文件。 目标文件的真正好处在于,如果我们想再次使用那个函数,我们所要做的就是包含"deck.h" 文件并把 shuffle.o 目标文件连接到新的可执行文件中。

      象这样的代码重用是经常发生的。虽然我们并没有编写前面作为调试语句调用的 printf 函数,连接器却能从我们用 #include <stdlib.h> 语句包含的文件中 找到它的声明,并把存储在C库(/lib/libc.so.6)中的目标代码连接进来。 这种方式使我们可以使用已能正确工作的其他人的函数,只关心我们所要解决的问题。 这就是为什么头文件中一般只含有数据和函数声明,而没有函数体。

  • 相关阅读:
    使用过滤器解决JSP页面的乱码问题
    六度空间(MOOC)
    navicat连接mysql出现1251错误
    Saving James Bond
    列出连通集(mooc)
    File Transfer(并查集)
    堆中的路径(MOOC)
    智慧树mooc自动刷课代码
    Hibernate三种状态的区分。
    Hibernate中get和load方法的区别
  • 原文地址:https://www.cnblogs.com/lihuidashen/p/3450100.html
Copyright © 2020-2023  润新知