• 电工杯


    A题:风电功率波动特性的分析

                         ——从一个风电场入手

    东北电力大学微通电力系统研究室

    随着资源环境约束的日趋严苛,以化石能源为主的能源发展模式必须根本转变。近年来,可再生能源开发的热潮遍及全球。我国已经规划了8个千万kW级的大型风电基地。截至2012年底,我国风电装机容量已超过7000万kW,居世界第1位。预计2020年全国风电装机容量将超过2.0亿kW。

    风力发电不消耗任何燃料,可谓清洁能源;风力来源于大气运动,不会因为开发风电而枯竭,是一种可再生能源。

    风电机组发出的功率主要与风速有关。由于风的不确定性、间歇性以及风电场内各机组间尾流的影响,使得风力发电机不能像常规发电机组那样根据对电能的需求来确定发电。

    大规模风电基地通常需接入电网来实现风电功率的传输与消纳。风电功率的随机波动被认为是对电网带来不利影响的主要因素。研究风电功率的波动特性,不论对改善风电预测精度还是克服风电接入对电网的不利影响都有重要意义。

    风电场通常有几十台、上百台风电机组。大型风电基地由数十甚至上百个风电场组成。因此,风电功率的波动有很强的时空差异性。

    附件给出了某风电场中20台1.5MW风电机组30天的风电功率数据(单位为kW,间隔为5s),请做如下分析。

    1.任选5个风电机组:

    a)在30天的范围内,分析机组i风电功率Pi5s(tk) 波动符合哪几种概率分布?分别计算数值特征并进行检验,推荐最好的分布并说明理由。比较5个机组分布的异同。

    b)用以上确定的最好的概率分布,以每日为时间窗宽,对5个风电功率分别计算30个时段的概率分布参数并做出检验;试比较不同机组(空间)、不同时段(时间)风电功率波动的概率分布以及与30天总体分布之间的关系,由此说明了什么?

    2.在风电场实际运行中,由于数据存储和管理等方面的限制,难以集中记录全部风电机组功率的秒级数据。通常用分钟级间隔乃至更长间隔的数据来描述风电功率波动。试从上述5台机的风电功率数据中提取出间隔为1分钟的数据序列Pim(tk)。对于这5个序列,再做题1a)的分析。

    3.试分析用Pim(tk)代替Pi5s(tk)时,损失了那些风电功率波动信息?如何度量?有何影响?从上述全部计算中你能得出什么一般性的结论?

    4.设全场20台风电机的总功率PΣ(t)=ΣPi(t),试计算时间间隔为1分钟、5分钟和15分钟的总功率序列PΣm(tk),PΣ5m(tk),PΣ15m(tk),分析其波动的概率分布数值特征。若以PΣ5m(tk)代替PΣm(tk)来表征全场风电功率波动,损失了什么信息?如何度量?有何影响?

    5.如果分别采用PΣ5m(tk)和PΣ15m(tk)作为样本来预测未来4小时(每15分钟一个点)风电场的总功率,请设计合适的预测模式(可取适当时段的数据作为历史数据建模,后续数据作为实际风电功率用于检验预测误差),分别给出不少于7天的滚动预测结果,分析比较2种方式的预测误差。

    6.风电功率变化对电网运行的影响主要与其时序特性有关,比如风电大幅波动带来的调频机组爬坡速率分析。试分析单台风电机功率Pim(tk)与风电场总功率PΣm(tk)在时序上表现出的主要差别;前面得到的概率分布数值特征在分析时序波动特性方面有何作用?有何局限?

    7.通过上述对机组和全场风电功率波动的分析,你对风电功率波动特性有何认识?这些认识如何用来克服风电波动对电网运行的不利影响?请构建实例来说明。

    三天三夜的电工杯 结束了,也是自己第一次的数模之旅,72小时,几个小时的睡眠,电脑辛苦了,到现在,,什么也说不出了,什么也不如去回忆去体验一次,但是值得,只是值得。

  • 相关阅读:
    2010,只有感恩。
    用 pythonmessage 为程序库和日志模块解耦
    PHP 范例
    Install Perl CPAN modules
    关于人生的思考
    Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
    PHP error: Cannot modify header information headers already sent
    Iceweasel安装Java plugin
    ARP协议以及集线器,交换机,路由器的组合
    Java 字符串操作
  • 原文地址:https://www.cnblogs.com/lihuidashen/p/3442471.html
Copyright © 2020-2023  润新知