• [LeetCode] 787. Cheapest Flights Within K Stops K次转机内的最便宜航班


    There are n cities connected by m flights. Each fight starts from city and arrives at v with a price w.

    Now given all the cities and fights, together with starting city src and the destination dst, your task is to find the cheapest price from src to dst with up to k stops. If there is no such route, output -1.

    Example 1:
    Input: 
    n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
    src = 0, dst = 2, k = 1
    Output: 200
    Explanation: 
    The graph looks like this:
    

    The cheapest price from city 0 to city 2 with at most 1 stop costs 200, as marked red in the picture.
    Example 2:
    Input: 
    n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
    src = 0, dst = 2, k = 0
    Output: 500
    Explanation: 
    The graph looks like this:
    

    The cheapest price from city 0 to city 2 with at most 0 stop costs 500, as marked blue in the picture.

    Note:

    • The number of nodes n will be in range [1, 100], with nodes labeled from 0 to n - 1.
    • The size of flights will be in range [0, n * (n - 1) / 2].
    • The format of each flight will be (src, dst, price).
    • The price of each flight will be in the range [1, 10000].
    • k is in the range of [0, n - 1].
    • There will not be any duplicated flights or self cycles.

    解法:Dijkstra's algorithm, 

    Java:

    class Solution {
        public int findCheapestPrice(int n, int[][] flights, int src, int dst, int K) {
            Map<Integer, Map<Integer, Integer>> prices = new HashMap<>();
            for (int[] f : flights) {
                if (!prices.containsKey(f[0])) prices.put(f[0], new HashMap<>());
                prices.get(f[0]).put(f[1], f[2]);
            }
            Queue<int[]> pq = new PriorityQueue<>((a, b) -> (Integer.compare(a[0], b[0])));
            pq.add(new int[] {0, src, k + 1});
            while (!pq.isEmpty()) {
                int[] top = pq.remove();
                int price = top[0];
                int city = top[1];
                int stops = top[2];
                if (city == dst) return price;
                if (stops > 0) {
                    Map<Integer, Integer> adj = prices.getOrDefault(city, new HashMap<>());
                    for (int a : adj.keySet()) {
                        pq.add(new int[] {price + adj.get(a), a, stops - 1});
                    }
                }
            }
            return -1;
        }      
    } 

    Python:

    class Solution(object):
        def findCheapestPrice(self, n, flights, src, dst, K):
            """
            :type n: int
            :type flights: List[List[int]]
            :type src: int
            :type dst: int
            :type K: int
            :rtype: int
            """
            adj = collections.defaultdict(list)
            for u, v, w in flights:
                adj[u].append((v, w))
            best = collections.defaultdict(lambda: collections.defaultdict(lambda: float("inf")))
            min_heap = [(0, src, K+1)]
            while min_heap:
                result, u, k = heapq.heappop(min_heap)
                if k < 0 or best[u][k] < result:
                    continue
                if u == dst:
                    return result
                for v, w in adj[u]:
                    if result+w < best[v][k-1]:
                        best[v][k-1] = result+w                    
                        heapq.heappush(min_heap, (result+w, v, k-1))
            return -1
    

    Python:

    class Solution(object):
        def findCheapestPrice(self, n, flights, src, dst, K):
            """
            :type n: int
            :type flights: List[List[int]]
            :type src: int
            :type dst: int
            :type K: int
            :rtype: int
            """
            f = collections.defaultdict(dict)
            for a, b, p in flights:
                f[a][b] = p
            heap = [(0, src, k + 1)]
            while heap:
                p, i, k = heapq.heappop(heap)
                if i == dst:
                    return p
                if k > 0:
                    for j in f[i]:
                        heapq.heappush(heap, (p + f[i][j], j, k - 1))
            return -1  

    C++:

    // Time:  O((|E| + |V|) * log|V|) = O(|E| * log|V|)
    // Space: O(|E| + |V|) = O(|E|)
    
    class Solution {
    public:
        int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int K) {
            using P = pair<int, int>;
            unordered_map<int, vector<P>> adj;
            for (const auto& flight : flights) {
                int u, v, w;
                tie(u, v, w) = make_tuple(flight[0], flight[1], flight[2]);
                adj[u].emplace_back(v, w);
            }
            
            unordered_map<int, unordered_map<int, int>> best;
            using T = tuple<int, int, int>;
            priority_queue<T, vector<T>, greater<T>> min_heap;
            min_heap.emplace(0, src, K + 1);
            while (!min_heap.empty()) {
                int result, u, k;
                tie(result, u, k) = min_heap.top(); min_heap.pop();
                if (k < 0 ||
                    (best.count(u) && best[u].count(k) &&  best[u][k] < result)) {
                    continue;
                }
                if (u == dst) {
                    return result;
                }
                for (const auto& kvp : adj[u]) {
                    int v, w;
                    tie(v, w) = kvp;
                    if (!best.count(v) ||
                        !best[v].count(k - 1) ||
                        result + w < best[v][k - 1]) {
                        best[v][k - 1] = result + w;
                        min_heap.emplace(result + w, v, k - 1);
                    }
                }
            }
            return -1;
        }
    };
    

        

    All LeetCode Questions List 题目汇总

  • 相关阅读:
    Ubuntu 代理及系统信息修改
    名词解释
    第一章 用标准I/O函数将标准输入复制到标准输出 1-3
    Viewpager模仿微信主布局的三种方式 ViewPager,Fragment,ViewPager+FragmentPagerAdapter
    github入门到上传本地项目
    安卓界面篇(一) 自定义一个topbar
    ace布置小作业: 制作一个简单的电话号码归属地查询软件:JSON解析和Volly发送get请求
    android json解析及简单例子
    Volly框架的使用基础版及使用中的一些坑 Ace 网络篇(三)
    Android清单文件详解(三)----应用程序的根节点<application>
  • 原文地址:https://www.cnblogs.com/lightwindy/p/9613690.html
Copyright © 2020-2023  润新知