Your are given an array of integers prices
, for which the i
-th element is the price of a given stock on day i
; and a non-negative integer fee
representing a transaction fee.
You may complete as many transactions as you like, but you need to pay the transaction fee for each transaction. You may not buy more than 1 share of a stock at a time (ie. you must sell the stock share before you buy again.)
Return the maximum profit you can make.
Example 1:
Input: prices = [1, 3, 2, 8, 4, 9], fee = 2 Output: 8 Explanation: The maximum profit can be achieved by:
- Buying at prices[0] = 1
- Selling at prices[3] = 8
- Buying at prices[4] = 4
- Selling at prices[5] = 9
The total profit is ((8 - 1) - 2) + ((9 - 4) - 2) = 8.
Note:
0 < prices.length <= 50000
.0 < prices[i] < 50000
.0 <= fee < 50000
.
还是买卖股票的最佳时间问题,这题每一次买卖时会有交易费。
解法:DP。第i天的利润分成两个,用两个dp数组分别进行计算,buy[i], sell[i]。
初始值:buy[0]=-prices[0], sell[0]=0
公式:
buy[i] = Math.max(buy[i - 1], sell[i - 1] - prices[i])
第i天买,如果第i-1天是买,就不能买了,利润是buy[i-1]。如果i-1天是卖,就可以买,利润是sell[i-1] - prices[i]。
sell[i] = Math.max(sell[i - 1], buy[i - 1] + prices[i])
第i天卖,如果第i-1天是卖,就不能卖了,利润是sell[i-1]。如果i-1天是买,就可以卖,利润是buy[i - 1] + prices[i]。
Most consistent ways of dealing with the series of stock problems
Java: pay the fee when buying the stock
public int maxProfit(int[] prices, int fee) { if (prices.length <= 1) return 0; int days = prices.length, buy[] = new int[days], sell[] = new int[days]; buy[0]=-prices[0]-fee; for (int i = 1; i<days; i++) { buy[i] = Math.max(buy[i - 1], sell[i - 1] - prices[i] - fee); // keep the same as day i-1, or buy from sell status at day i-1 sell[i] = Math.max(sell[i - 1], buy[i - 1] + prices[i]); // keep the same as day i-1, or sell from buy status at day i-1 } return sell[days - 1]; }
Java: pay the fee when selling the stock
public int maxProfit(int[] prices, int fee) { if (prices.length <= 1) return 0; int days = prices.length, buy[] = new int[days], sell[] = new int[days]; buy[0]=-prices[0]; for (int i = 1; i<days; i++) { buy[i] = Math.max(buy[i - 1], sell[i - 1] - prices[i]); // keep the same as day i-1, or buy from sell status at day i-1 sell[i] = Math.max(sell[i - 1], buy[i - 1] + prices[i] - fee); // keep the same as day i-1, or sell from buy status at day i-1 } return sell[days - 1]; }
Python:
class Solution(object): def maxProfit(self, prices, fee): """ :type prices: List[int] :type fee: int :rtype: int """ cash, hold = 0, -prices[0] for i in xrange(1, len(prices)): cash = max(cash, hold+prices[i]-fee) hold = max(hold, cash-prices[i]) return cash
C++:
class Solution { public: int maxProfit(vector<int>& prices, int fee) { int s0 = 0, s1 = INT_MIN; for(int p:prices) { int tmp = s0; s0 = max(s0, s1+p); s1 = max(s1, tmp-p-fee); } return s0; } };