• [LeetCode] 241. Different Ways to Add Parentheses 添加括号的不同方式


    Given a string of numbers and operators, return all possible results from computing all the different possible ways to group numbers and operators. The valid operators are +-and *.


    Example 1

    Input: "2-1-1".

    ((2-1)-1) = 0
    (2-(1-1)) = 2

    Output: [0, 2]


    Example 2

    Input: "2*3-4*5"

    (2*(3-(4*5))) = -34
    ((2*3)-(4*5)) = -14
    ((2*(3-4))*5) = -10
    (2*((3-4)*5)) = -10
    (((2*3)-4)*5) = 10

    Output: [-34, -14, -10, -10, 10]

    给定一个含有数字和运算符的表达式,运算符可以是加减乘,在任意位置添加括号,求出所有可能的表达式值。 

    解法:递归

    Java:

    public class Solution {
        public List<Integer> diffWaysToCompute(String input) {
            List<Integer> result = new ArrayList<>();
            if (input == null || input.length() == 0) {
                return result;
            }
             
            for (int i = 0; i < input.length(); i++) {
                char c = input.charAt(i);
                 
                if (!isOperator(c)) {
                    continue;
                }
                 
                List<Integer> left = diffWaysToCompute(input.substring(0, i));
                List<Integer> right = diffWaysToCompute(input.substring(i + 1));
                 
                for (int num1 : left) {
                    for (int num2 : right) {
                        int val = calculate(num1, num2, c);
                        result.add(val);
                    }
                }
            }
             
            // only contains one number
            if (result.isEmpty()) {
                result.add(Integer.parseInt(input));
            }
             
            return result;
        }
         
        private int calculate(int num1, int num2, char operator) {
            int result = 0;
             
            switch(operator) {
                case '+' : result = num1 + num2;
                break;
                 
                case '-' : result = num1 - num2;
                break;
                 
                case '*' : result = num1 * num2;
                break;
            }
             
            return result;
        }
         
        private boolean isOperator(char operator) {
            return (operator == '+') || (operator == '-') || (operator == '*');
        }
    }  

    Python:

    import operator
    import re
    
    class Solution:
        # @param {string} input
        # @return {integer[]}
        def diffWaysToCompute(self, input):
            tokens = re.split('(D)', input)
            nums = map(int, tokens[::2])
            ops = map({'+': operator.add, '-': operator.sub, '*': operator.mul}.get, tokens[1::2])
            lookup = [[None for _ in xrange(len(nums))] for _ in xrange(len(nums))]
    
            def diffWaysToComputeRecu(left, right):
                if left == right:
                    return [nums[left]]
                if lookup[left][right]:
                    return lookup[left][right]
                lookup[left][right] = [ops[i](x, y)
                                       for i in xrange(left, right)
                                       for x in diffWaysToComputeRecu(left, i)
                                       for y in diffWaysToComputeRecu(i + 1, right)]
                return lookup[left][right]
    
            return diffWaysToComputeRecu(0, len(nums) - 1)  

    Python:

    class Solution:
        # @param {string} input
        # @return {integer[]}
        def diffWaysToCompute(self, input):
            lookup = [[None for _ in xrange(len(input) + 1)] for _ in xrange(len(input) + 1)]
            ops = {'+': operator.add, '-': operator.sub, '*': operator.mul}
    
            def diffWaysToComputeRecu(left, right):
                if lookup[left][right]:
                    return lookup[left][right]
                result = []
                for i in xrange(left, right):
                    if input[i] in ops:
                        for x in diffWaysToComputeRecu(left, i):
                            for y in diffWaysToComputeRecu(i + 1, right):
                                result.append(ops[input[i]](x, y))
    
                if not result:
                    result = [int(input[left:right])]
                lookup[left][right] = result
                return lookup[left][right]
    
            return diffWaysToComputeRecu(0, len(input)) 

    C++:

    class Solution {
    public:
        vector<int> diffWaysToCompute(string input) {
            vector<int> res;
            for (int i = 0; i < input.size(); ++i) {
                if (input[i] == '+' || input[i] == '-' || input[i] == '*') {
                    vector<int> left = diffWaysToCompute(input.substr(0, i));
                    vector<int> right = diffWaysToCompute(input.substr(i + 1));
                    for (int j = 0; j < left.size(); ++j) {
                        for (int k = 0; k < right.size(); ++k) {
                            if (input[i] == '+') res.push_back(left[j] + right[k]);
                            else if (input[i] == '-') res.push_back(left[j] - right[k]);
                            else res.push_back(left[j] * right[k]);
                        }
                    }
                }
            }
            if (res.empty()) res.push_back(atoi(input.c_str()));
            return res;
        }
    };
    

      

    类似题目:

    [LeetCode] 95. Unique Binary Search Trees II 唯一二叉搜索树 II

    All LeetCode Questions List 题目汇总

  • 相关阅读:
    php函数总结
    文本框输入限制
    e.keyCode和e.which使用
    transform总结
    wampSever的mysql操作
    linux命令总结
    nginx总结
    微雪的stm32学习资料
    串口+RS485驱动
    cubemx+stm32串口学习汇总资料
  • 原文地址:https://www.cnblogs.com/lightwindy/p/9563789.html
Copyright © 2020-2023  润新知