• [LeetCode] 296. Best Meeting Point 最佳开会地点


    A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.

    For example, given three people living at (0,0)(0,4), and (2,2):

    1 - 0 - 0 - 0 - 1
    |   |   |   |   |
    0 - 0 - 0 - 0 - 0
    |   |   |   |   |
    0 - 0 - 1 - 0 - 0

    The point (0,2) is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.

    Hint:

    1. Try to solve it in one dimension first. How can this solution apply to the two dimension case?

    求最佳的开会地点,该地点需要到每个为1的点的曼哈顿距离之和最小。

    先看一维时有两个点A和B的情况,

    ______A_____P_______B_______

    那么我们可以发现,只要开会为位置P在[A, B]区间内,不管在哪,距离之和都是A和B之间的距离,如果P不在[A, B]之间,那么距离之和就会大于A和B之间的距离,那么我们现在再加两个点C和D:

    ______C_____A_____P_______B______D______

    P点的最佳位置就是在[A, B]区间内,这样和四个点的距离之和为AB距离加上CD距离,在其他任意一点的距离都会大于这个距离。给位置排好序,然后用最后一个坐标减去第一个坐标,即CD距离,倒数第二个坐标减去第二个坐标,即AB距离,以此类推,直到最中间停止,那么一维的情况分析出来了,二维的情况就是两个一维相加即可

    解法:横纵分离

    复杂度:时间 O(NM) 空间 O(NM)

    为了保证总长度最小,我们只要保证每条路径尽量不要重复就行了,比如1->2->3<-4这种一维的情况,如果起点是1,2和4,那2->3和1->2->3这两条路径就有重复了。为了尽量保证右边的点向左走,左边的点向右走,那我们就应该去这些点中间的点作为交点。由于是曼哈顿距离,我们可以分开计算横坐标和纵坐标,结果是一样的。所以我们算出各个横坐标到中点横坐标的距离,加上各个纵坐标到中点纵坐标的距离,就是结果了。

    Java:

    public class Solution {
        public int minTotalDistance(int[][] grid) {
            List<Integer> ipos = new ArrayList<Integer>();
            List<Integer> jpos = new ArrayList<Integer>();
            // 统计出有哪些横纵坐标
            for(int i = 0; i < grid.length; i++){
                for(int j = 0; j < grid[0].length; j++){
                    if(grid[i][j] == 1){
                        ipos.add(i);
                        jpos.add(j);
                    }
                }
            }
            int sum = 0;
            // 计算纵坐标到纵坐标中点的距离,这里不需要排序,因为之前统计时是按照i的顺序
            for(Integer pos : ipos){
                sum += Math.abs(pos - ipos.get(ipos.size() / 2));
            }
            // 计算横坐标到横坐标中点的距离,这里需要排序,因为统计不是按照j的顺序
            Collections.sort(jpos);
            for(Integer pos : jpos){
                sum += Math.abs(pos - jpos.get(jpos.size() / 2));
            }
            return sum;
        }
    }  

    C++:

    class Solution {
    public:
        int minTotalDistance(vector<vector<int>>& grid) {
            vector<int> rows, cols;
            for (int i = 0; i < grid.size(); ++i) {
                for (int j = 0; j < grid[i].size(); ++j) {
                    if (grid[i][j] == 1) {
                        rows.push_back(i);
                        cols.push_back(j);
                    }
                }
            }
            return minTotalDistance(rows) + minTotalDistance(cols);
        }
        int minTotalDistance(vector<int> v) {
            int res = 0;
            sort(v.begin(), v.end());
            int i = 0, j = v.size() - 1;
            while (i < j) res += v[j--] - v[i++];
            return res;
        }
    };
    

    C++:

    class Solution {
    public:
        int minTotalDistance(vector<vector<int>>& grid) {
            vector<int> rows, cols;
            for (int i = 0; i < grid.size(); ++i) {
                for (int j = 0; j < grid[i].size(); ++j) {
                    if (grid[i][j] == 1) {
                        rows.push_back(i);
                        cols.push_back(j);
                    }
                }
            }
            sort(cols.begin(), cols.end());
            int res = 0, i = 0, j = rows.size() - 1;
            while (i < j) res += rows[j] - rows[i] + cols[j--] - cols[i++];
            return res;
        }
    };
    

      

      

    类似题目:

    [LeetCode] 286. Walls and Gates 墙和门

    [LeetCode] 317. Shortest Distance from All Buildings 建筑物的最短距离

    All LeetCode Questions List 题目汇总

  • 相关阅读:
    C# Volatile
    C#索引器
    04Prism WPF 入门实战 Module
    No module named '_bz2'
    pandas day01
    实例讲解虚拟机3种网络模式(桥接、nat、Hostonly)
    asp.net 截屏 截取web页面
    c# winform 截图 网页
    delphi AddObject 用法
    DBGrid 更变数据内容显示
  • 原文地址:https://www.cnblogs.com/lightwindy/p/9552041.html
Copyright © 2020-2023  润新知