Reverse bits of a given 32 bits unsigned integer.
For example, given input 43261596 (represented in binary as 00000010100101000001111010011100), return 964176192 (represented in binary as 00111001011110000010100101000000).
Follow up:
If this function is called many times, how would you optimize it?
Related problem: Reverse Integer
Credits:
Special thanks to @ts for adding this problem and creating all test cases.
将输入转换成2进制字符串,再翻转并扩充到32位,再将此32位的二进制转为无符号整数
int 在内存中以二进制形式存储,占据32位。用一个 int 型整数 ans 来记录结果,采用移位操作,因为:1. 注意到移位操作比乘2、除2操作效率更高,2. 移位操作很好地绕开了整型运算的溢出以及符号问题。在每次循环中:ans 每次左移一位,当 n 的最低位为1时,ans 的最低位就变为1,n 每次右移一位。总共进行32次循环。
Java: 每次只需移动1位
class Solution { public int reverseBits(int n) { int ans = 0; for (int i = 0; i < 32; i++) { ans <<= 1; if ((n & 1) == 1) ans++; n >>= 1; } return ans; } }
Java: 第 i 次循环移动 i 位
class Solution { public int reverseBits(int n) { int ans = 0; for (int i = 0; i < 32; i++) ans |= ((n >> i) & 1) << (31 - i); return ans; } }
Python:
class Solution: # @param n, an integer # @return an integer def reverseBits(self, n): string = bin(n) if '-' in string: string = string[:3] + string[3:].zfill(32)[::-1] else: string = string[:2] + string[2:].zfill(32)[::-1] return int(string, 2)
Python:
class Solution: # @param n, an integer # @return an integer def reverseBits(self, n): result = 0 for i in xrange(32): result <<= 1 result |= n & 1 n >>= 1 return result
Python:
def reverseBits(n) : res = 0 while (n > 0) : res = res << 1 if (n & 1 == 1) : res = res ^ 1 n = n >> 1 return res
Python:
def reverseBits2(n): res = 0 while n > 0: res <<= 1 res |= n & 1 n >>= 1 return res
Python: 将n的二进制表示从低位到高位的值依次取出,逆序排列得到翻转后的值。
class Solution(object): def reverseBits(self, n): """ :type n: int :rtype: int """ res = 0 for i in xrange(32): res <<= 1 res |= ((n >> i) & 1) return res
Python: 利用Python的bin()函数
class Solution(object): def reverseBits(self, n): """ :type n: int :rtype: int """ b = bin(n)[:1:-1] return int(b + '0'*(32-len(b)), 2)
C++:
class Solution { public: uint32_t reverseBits(uint32_t n) { uint32_t res = 0; for (int i = 0; i < 32; ++i) { if (n & 1 == 1) { res = (res << 1) + 1; } else { res = res << 1; } n = n >> 1; } return res; } };
LeetCode中有关位操作的题:
[LeetCode] 191. Number of 1 Bits 二进制数1的个数
Repeated DNA Sequences 求重复的DNA序列
Single Number 单独的数字
Single Number II 单独的数字之二
Grey Code 格雷码
类似题目:
[LeetCode] 191. Number of 1 Bits 二进制数1的个数
[LeetCode] 7. Reverse Integer 翻转整数