Given n
nodes labeled from 0
to n - 1
and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree.
For example:
Given n = 5
and edges = [[0, 1], [0, 2], [0, 3], [1, 4]]
, return true
.
Given n = 5
and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]]
, return false
.
Hint:
- Given
n = 5
andedges = [[0, 1], [1, 2], [3, 4]]
, what should your return? Is this case a valid tree? - According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
Note: you can assume that no duplicate edges will appear in edges
. Since all edges are undirected, [0, 1]
is the same as [1, 0]
and thus will not appear together in edges
.
给一个无向图,判断其是否为一棵树。如果是树的话,所有的节点必须是连接的,也就是说必须是连通图,而且不能有环,所以就变成了验证是否是连通图和是否含有环。
解法1: DFS
解法2: BFS
解法3: Union Find
Java: DFS
public boolean validTree(int n, int[][] edges) { HashMap<Integer, ArrayList<Integer>> map = new HashMap<Integer, ArrayList<Integer>>(); for(int i=0; i<n; i++){ ArrayList<Integer> list = new ArrayList<Integer>(); map.put(i, list); } for(int[] edge: edges){ map.get(edge[0]).add(edge[1]); map.get(edge[1]).add(edge[0]); } boolean[] visited = new boolean[n]; if(!helper(0, -1, map, visited)) return false; for(boolean b: visited){ if(!b) return false; } return true; } public boolean helper(int curr, int parent, HashMap<Integer, ArrayList<Integer>> map, boolean[] visited){ if(visited[curr]) return false; visited[curr] = true; for(int i: map.get(curr)){ if(i!=parent && !helper(i, curr, map, visited)){ return false; } } return true; }
Java: BFS
public boolean validTree(int n, int[][] edges) { HashMap<Integer, ArrayList<Integer>> map = new HashMap<Integer, ArrayList<Integer>>(); for(int i=0; i<n; i++){ ArrayList<Integer> list = new ArrayList<Integer>(); map.put(i, list); } for(int[] edge: edges){ map.get(edge[0]).add(edge[1]); map.get(edge[1]).add(edge[0]); } boolean[] visited = new boolean[n]; LinkedList<Integer> queue = new LinkedList<Integer>(); queue.offer(0); while(!queue.isEmpty()){ int top = queue.poll(); if(visited[top]) return false; visited[top]=true; for(int i: map.get(top)){ if(!visited[i]) queue.offer(i); } } for(boolean b: visited){ if(!b) return false; } return true;
Java:BFS
public class Solution { /** * @param n an integer * @param edges a list of undirected edges * @return true if it's a valid tree, or false */ public boolean validTree(int n, int[][] edges) { if (n == 0) { return false; } if (edges.length != n - 1) { return false; } Map<Integer, Set<Integer>> graph = initializeGraph(n, edges); // bfs Queue<Integer> queue = new LinkedList<>(); Set<Integer> hash = new HashSet<>(); queue.offer(0); hash.add(0); while (!queue.isEmpty()) { int node = queue.poll(); for (Integer neighbor : graph.get(node)) { if (hash.contains(neighbor)) { continue; } hash.add(neighbor); queue.offer(neighbor); } } return (hash.size() == n); } private Map<Integer, Set<Integer>> initializeGraph(int n, int[][] edges) { Map<Integer, Set<Integer>> graph = new HashMap<>(); for (int i = 0; i < n; i++) { graph.put(i, new HashSet<Integer>()); } for (int i = 0; i < edges.length; i++) { int u = edges[i][0]; int v = edges[i][1]; graph.get(u).add(v); graph.get(v).add(u); } return graph; } }
Java: Union Find
public class Solution { class UnionFind{ HashMap<Integer, Integer> father = new HashMap<Integer, Integer>(); UnionFind(int n){ for(int i = 0 ; i < n; i++) { father.put(i, i); } } int compressed_find(int x){ int parent = father.get(x); while(parent!=father.get(parent)) { parent = father.get(parent); } int temp = -1; int fa = father.get(x); while(fa!=father.get(fa)) { temp = father.get(fa); father.put(fa, parent) ; fa = temp; } return parent; } void union(int x, int y){ int fa_x = compressed_find(x); int fa_y = compressed_find(y); if(fa_x != fa_y) father.put(fa_x, fa_y); } } /** * @param n an integer * @param edges a list of undirected edges * @return true if it's a valid tree, or false */ public boolean validTree(int n, int[][] edges) { // tree should have n nodes with n-1 edges if (n - 1 != edges.length) { return false; } UnionFind uf = new UnionFind(n); for (int i = 0; i < edges.length; i++) { if (uf.compressed_find(edges[i][0]) == uf.compressed_find(edges[i][1])) { return false; } uf.union(edges[i][0], edges[i][1]); } return true; } }
Python: DFS
class Solution(object): def validTree(self, n, edges): lookup = collections.defaultdict(list) for edge in edges: lookup[edge[0]].append(edge[1]) lookup[edge[1]].append(edge[0]) visited = [False] * n if not self.helper(0, -1, lookup, visited): return False for v in visited: if not v: return False return True def helper(self, curr, parent, lookup, visited): print curr, visited if visited[curr]: return False visited[curr] = True for i in lookup[curr]: if (i != parent and not self.helper(i, curr, lookup, visited)): return False return True if __name__ == '__main__': print Solution().validTree(5, [[0, 1], [0, 2], [0, 3], [1, 4]]) print Solution().validTree(5, [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]])
Python: BFS, Time: O(|V| + |E|), Space: O(|V| + |E|)
class Solution(object): # @param {integer} n # @param {integer[][]} edges # @return {boolean} def validTree(self, n, edges): if len(edges) != n - 1: # Check number of edges. return False # init node's neighbors in dict neighbors = collections.defaultdict(list) for u, v in edges: neighbors[u].append(v) neighbors[v].append(u) # BFS to check whether the graph is valid tree. visited = {} q = collections.deque([0]) while q: curr = q.popleft() visited[curr] = True for node in neighbors[curr]: if node not in visited: visited[node] = True q.append(node) return len(visited) == n
Python: Union Find
class Solution: # @param {int} n an integer # @param {int[][]} edges a list of undirected edges # @return {boolean} true if it's a valid tree, or false def validTree(self, n, edges): # Write your code here root = [i for i in range(n)] for i in edges: root1 = self.find(root, i[0]) root2 = self.find(root, i[1]) if root1 == root2: return False else: root[root1] = root2 return len(edges) == n - 1 def find(self, root, e): if root[e] == e: return e else: root[e] = self.find(root, root[e]) return root[e]
C++: DFS
class Solution { public: bool validTree(int n, vector<pair<int, int>>& edges) { vector<vector<int>> g(n, vector<int>()); vector<bool> v(n, false); for (auto a : edges) { g[a.first].push_back(a.second); g[a.second].push_back(a.first); } if (!dfs(g, v, 0, -1)) return false; for (auto a : v) { if (!a) return false; } return true; } bool dfs(vector<vector<int>> &g, vector<bool> &v, int cur, int pre) { if (v[cur]) return false; v[cur] = true; for (auto a : g[cur]) { if (a != pre) { if (!dfs(g, v, a, cur)) return false; } } return true; } };
C++: BFS
class Solution { public: bool validTree(int n, vector<pair<int, int>>& edges) { vector<unordered_set<int>> g(n, unordered_set<int>()); unordered_set<int> s{{0}}; queue<int> q{{0}}; for (auto a : edges) { g[a.first].insert(a.second); g[a.second].insert(a.first); } while (!q.empty()) { int t = q.front(); q.pop(); for (auto a : g[t]) { if (s.count(a)) return false; s.insert(a); q.push(a); g[a].erase(t); } } return s.size() == n; } };
C++: Union Find
class Solution { public: bool validTree(int n, vector<pair<int, int>>& edges) { vector<int> roots(n, -1); for (auto a : edges) { int x = find(roots, a.first), y = find(roots, a.second); if (x == y) return false; roots[x] = y; } return edges.size() == n - 1; } int find(vector<int> &roots, int i) { while (roots[i] != -1) i = roots[i]; return i; } };
类似题目:
[LeetCode] 200. Number of Islands 岛屿的数量
[LeetCode] 305. Number of Islands II 岛屿的数量之二
[LeetCode] 323. Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数