• [LeetCode] 261. Graph Valid Tree 图是否是树


    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree.

    For example:

    Given n = 5 and edges = [[0, 1], [0, 2], [0, 3], [1, 4]], return true.

    Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]], return false.

    Hint:

    1. Given n = 5 and edges = [[0, 1], [1, 2], [3, 4]], what should your return? Is this case a valid tree?
    2. According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”

    Note: you can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

    给一个无向图,判断其是否为一棵树。如果是树的话,所有的节点必须是连接的,也就是说必须是连通图,而且不能有环,所以就变成了验证是否是连通图和是否含有环。

    解法1: DFS

    解法2: BFS

    解法3: Union Find

    Java: DFS

    public boolean validTree(int n, int[][] edges) {
        HashMap<Integer, ArrayList<Integer>> map = new HashMap<Integer, ArrayList<Integer>>();
        for(int i=0; i<n; i++){
            ArrayList<Integer> list = new ArrayList<Integer>();
            map.put(i, list);
        }
     
        for(int[] edge: edges){
            map.get(edge[0]).add(edge[1]);
            map.get(edge[1]).add(edge[0]);
        }
     
        boolean[] visited = new boolean[n];
     
        if(!helper(0, -1, map, visited))
            return false;
     
        for(boolean b: visited){
            if(!b)
                return false;
        }
     
        return true;
    }
     
    public boolean helper(int curr, int parent, HashMap<Integer, ArrayList<Integer>> map, boolean[] visited){
        if(visited[curr])
            return false;
     
        visited[curr] = true;
     
        for(int i: map.get(curr)){
            if(i!=parent && !helper(i, curr, map, visited)){
                return false;
            }
        }   
     
        return true;
    } 

    Java: BFS

    public boolean validTree(int n, int[][] edges) {
        HashMap<Integer, ArrayList<Integer>> map = new HashMap<Integer, ArrayList<Integer>>();
        for(int i=0; i<n; i++){
            ArrayList<Integer> list = new ArrayList<Integer>();
            map.put(i, list);
        }
     
        for(int[] edge: edges){
            map.get(edge[0]).add(edge[1]);
            map.get(edge[1]).add(edge[0]);
        }
     
        boolean[] visited = new boolean[n];
     
        LinkedList<Integer> queue = new LinkedList<Integer>();
        queue.offer(0);
        while(!queue.isEmpty()){
            int top = queue.poll();
            if(visited[top])
                return false;
     
            visited[top]=true;
     
            for(int i: map.get(top)){
                if(!visited[i])
                    queue.offer(i);
            }
        }
     
        for(boolean b: visited){
            if(!b)
                return false;
        }
     
        return true; 

    Java:BFS

    public class Solution {
        /**
         * @param n an integer
         * @param edges a list of undirected edges
         * @return true if it's a valid tree, or false
         */
        public boolean validTree(int n, int[][] edges) {
            if (n == 0) {
                return false;
            }
            
            if (edges.length != n - 1) {
                return false;
            }
            
            Map<Integer, Set<Integer>> graph = initializeGraph(n, edges);
            
            // bfs
            Queue<Integer> queue = new LinkedList<>();
            Set<Integer> hash = new HashSet<>();
            
            queue.offer(0);
            hash.add(0);
            while (!queue.isEmpty()) {
                int node = queue.poll();
                for (Integer neighbor : graph.get(node)) {
                    if (hash.contains(neighbor)) {
                        continue;
                    }
                    hash.add(neighbor);
                    queue.offer(neighbor);
                }
            }
            
            return (hash.size() == n);
        }
        
        private Map<Integer, Set<Integer>> initializeGraph(int n, int[][] edges) {
            Map<Integer, Set<Integer>> graph = new HashMap<>();
            for (int i = 0; i < n; i++) {
                graph.put(i, new HashSet<Integer>());
            }
            
            for (int i = 0; i < edges.length; i++) {
                int u = edges[i][0];
                int v = edges[i][1];
                graph.get(u).add(v);
                graph.get(v).add(u);
            }
            
            return graph;
        }
    }
    

    Java: Union Find  

    public class Solution {
          class UnionFind{
            HashMap<Integer, Integer> father = new HashMap<Integer, Integer>();
            UnionFind(int n){
                for(int i = 0 ; i < n; i++) {
                    father.put(i, i); 
                }
            }
            int compressed_find(int x){
                int parent =  father.get(x);
                while(parent!=father.get(parent)) {
                    parent = father.get(parent);
                }
                int temp = -1;
                int fa = father.get(x);
                while(fa!=father.get(fa)) {
                    temp = father.get(fa);
                    father.put(fa, parent) ;
                    fa = temp;
                }
                return parent;
                    
            }
            
            void union(int x, int y){
                int fa_x = compressed_find(x);
                int fa_y = compressed_find(y);
                if(fa_x != fa_y)
                    father.put(fa_x, fa_y);
            }
        }
        /**
         * @param n an integer
         * @param edges a list of undirected edges
         * @return true if it's a valid tree, or false
         */
        public boolean validTree(int n, int[][] edges) {
            // tree should have n nodes with n-1 edges
            if (n - 1 != edges.length) {
                return false;
            }
            
            UnionFind uf = new UnionFind(n);
            
            for (int i = 0; i < edges.length; i++) {
                if (uf.compressed_find(edges[i][0]) == uf.compressed_find(edges[i][1])) {
                    return false;
                }
                uf.union(edges[i][0], edges[i][1]);
            }
            return true;
        }
    }  

    Python: DFS

    class Solution(object):
        def validTree(self, n, edges):
            lookup = collections.defaultdict(list)
            for edge in edges:
                lookup[edge[0]].append(edge[1])
                lookup[edge[1]].append(edge[0])
            visited = [False] * n
    
            if not self.helper(0, -1, lookup, visited):
                return False
    
            for v in visited:
                if not v:
                    return False
    
            return True
    
        def helper(self, curr, parent, lookup, visited):
            print curr, visited
            if visited[curr]:
                return False
            visited[curr] = True
            for i in lookup[curr]:
                if (i != parent and not self.helper(i, curr, lookup, visited)):
                    return False
    
            return True
    
    if __name__ == '__main__':
        print Solution().validTree(5, [[0, 1], [0, 2], [0, 3], [1, 4]])
        print Solution().validTree(5, [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]]) 

    Python: BFS, Time: O(|V| + |E|), Space: O(|V| + |E|)

    class Solution(object):
        # @param {integer} n
        # @param {integer[][]} edges
        # @return {boolean}
        def validTree(self, n, edges):
            if len(edges) != n - 1:  # Check number of edges.
                return False
    
            # init node's neighbors in dict
            neighbors = collections.defaultdict(list)
            for u, v in edges:
                neighbors[u].append(v)
                neighbors[v].append(u)
    
            # BFS to check whether the graph is valid tree.
            visited = {}
            q = collections.deque([0])
            while q:
                curr = q.popleft()
                visited[curr] = True
                for node in neighbors[curr]:
                    if node not in visited:
                        visited[node] = True
                        q.append(node)
    
            return len(visited) == n
    

    Python: Union Find

    class Solution:
        # @param {int} n an integer
        # @param {int[][]} edges a list of undirected edges
        # @return {boolean} true if it's a valid tree, or false
        def validTree(self, n, edges):
            # Write your code here
            root = [i for i in range(n)]
            for i in edges:
                root1 = self.find(root, i[0])
                root2 = self.find(root, i[1])
                if root1 == root2:
                    return False
                else:
                    root[root1] = root2
            return len(edges) == n - 1
            
        def find(self, root, e):
            if root[e] == e:
                return e
            else:
                root[e] = self.find(root, root[e])
                return root[e]  

    C++: DFS

    class Solution {
    public:
        bool validTree(int n, vector<pair<int, int>>& edges) {
            vector<vector<int>> g(n, vector<int>());
            vector<bool> v(n, false);
            for (auto a : edges) {
                g[a.first].push_back(a.second);
                g[a.second].push_back(a.first);
            }
            if (!dfs(g, v, 0, -1)) return false;
            for (auto a : v) {
                if (!a) return false;
            }
            return true;
        }
        bool dfs(vector<vector<int>> &g, vector<bool> &v, int cur, int pre) {
            if (v[cur]) return false;
            v[cur] = true;
            for (auto a : g[cur]) {
                if (a != pre) {
                    if (!dfs(g, v, a, cur)) return false;
                }
            }
            return true;
        }
    };
    

    C++: BFS  

    class Solution {
    public:
        bool validTree(int n, vector<pair<int, int>>& edges) {
            vector<unordered_set<int>> g(n, unordered_set<int>());
            unordered_set<int> s{{0}};
            queue<int> q{{0}};
            for (auto a : edges) {
                g[a.first].insert(a.second);
                g[a.second].insert(a.first);
            }
            while (!q.empty()) {
                int t = q.front(); q.pop();
                for (auto a : g[t]) {
                    if (s.count(a)) return false;
                    s.insert(a);
                    q.push(a);
                    g[a].erase(t);
                }
            }
            return s.size() == n;
        }
    };
    

    C++: Union Find  

    class Solution {
    public:
        bool validTree(int n, vector<pair<int, int>>& edges) {
            vector<int> roots(n, -1);
            for (auto a : edges) {
                int x = find(roots, a.first), y = find(roots, a.second);
                if (x == y) return false;
                roots[x] = y;
            }
            return edges.size() == n - 1;
        }
        int find(vector<int> &roots, int i) {
            while (roots[i] != -1) i = roots[i];
            return i;
        }
    };
    

      

    类似题目:  

    [LeetCode] 200. Number of Islands 岛屿的数量

    [LeetCode] 305. Number of Islands II 岛屿的数量之二

    [LeetCode] 323. Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    All LeetCode Questions List 题目汇总

  • 相关阅读:
    dev c++ 中显示计算机中丢失libiconv2.dll
    poj 1456 Supermarket
    codeforce 867E Buy Low Sell High
    Java编写程序时出现警告:Resource leak: input is never closed 解决方法
    codeforce 8A
    CF1110B
    ZOJ 1914 Arctic Network
    POJ 1258 Agri-Net
    Poj 1751 Highways
    ZOJ 2158 Truck History
  • 原文地址:https://www.cnblogs.com/lightwindy/p/8636516.html
Copyright © 2020-2023  润新知