A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2 Output: 3 Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner: 1. Right -> Right -> Down 2. Right -> Down -> Right 3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3 Output: 28
解题思路:
Climbing Stairs二维版。计算解个数的题多半是用DP。而这两题状态也非常显然,dp[i][j]表示从起点到位置(i, j)的路径总数。DP题目定义好状态后,接下去有两个任务:找通项公式,以及确定计算的方向。
1. 由于只能向右和左走,所以对于(i, j)来说,只能从左边或上边的格子走下来:
dp[i][j] = dp[i-1][j] + dp[i][j-1]
2. 对于网格最上边和最左边,则只能从起点出发直线走到,dp[0][j] = dp[i][0] = 1
3. 计算方向从上到下,从左到右即可。可以用滚动数组实现。
Java Solution 1:
class Solution { public int uniquePaths(int m, int n) { if (m == 0 || n == 0) { return 1; } int[][] dp = new int[m][n]; for (int i = 0; i < m; i++) { dp[i][0] = 1; } for (int i = 0; i < n; i++) { dp[0][i] = 1; } for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { dp[i][j] = dp[i - 1][j] + dp[i][j - 1]; } } return dp[m - 1][n - 1]; } }
Java Solution 2:
class Solution { public int uniquePaths(int m, int n) { int[][] dp = new int[m][n]; int i, j; for (i = 0; i < m; ++i) { for (j = 0; j < n; ++ j) { if (i == 0 || j == 0) { dp[i][j] = 1; } else { dp[i][j] = dp[i-1][j] + dp[i][j-1]; } } } return dp[m-1][n-1]; } }
CPP:
class Solution { public: /** * @param n, m: positive integer (1 <= n ,m <= 100) * @return an integer */ int uniquePaths(int m, int n) { // wirte your code here vector<vector<int> > f(m, vector<int>(n)); for(int i = 0; i < n; i++) f[0][i] = 1; for(int i = 0; i < m; i++) f[i][0] = 1; for(int i = 1; i < m; i++) for(int j = 1; j < n; j++) f[i][j] = f[i-1][j] + f[i][j-1]; return f[m-1][n-1]; } };
Python:
class Solution(object): def uniquePaths(self, m, n): dp = [[0] * n for i in xrange(m)] for i in xrange(m): for j in xrange(n): if i == 0 or j == 0: dp[i][j] = 1 else: dp[i][j] = dp[i - 1][j] + dp[i][j - 1] return dp[m -1][n - 1]
Python: Time: O(m * n) Space: O(m + n)
class Solution: # @return an integer def uniquePaths(self, m, n): if m < n: return self.uniquePaths(n, m) ways = [1] * n for i in xrange(1, m): for j in xrange(1, n): ways[j] += ways[j - 1] return ways[n - 1]
Python:
class Solution: # @return an integer def c(self, m, n): mp = {} for i in range(m): for j in range(n): if(i == 0 or j == 0): mp[(i, j)] = 1 else: mp[(i, j)] = mp[(i - 1, j)] + mp[(i, j - 1)] return mp[(m - 1, n - 1)] def uniquePaths(self, m, n): return self.c(m, n)
Python: wo
class Solution(object): def uniquePaths(self, m, n): """ :type m: int :type n: int :rtype: int """ dp = [[0] * n for i in xrange(m)] # m, n不能反了 for i in xrange(m): for j in xrange(n): if i == 0 and j == 0: dp[i][j] = 1 elif i == 0: dp[i][j] = dp[i][j-1] elif j == 0: dp[i][j] = dp[i-1][j] else: dp[i][j] = dp[i-1][j] + dp[i][j-1] return dp[-1][-1]
JavaScript:
/** * @param m: positive integer (1 <= m <= 100) * @param n: positive integer (1 <= n <= 100) * @return: An integer */ const uniquePaths = function (m, n) { var f, i, j; f = new Array(m); for (i = 0; i < m; i++) f[i] = new Array(n); for (i = 0; i < m; i++) { for (j = 0; j < n; j++) { if (i === 0 || j === 0) { f[i][j] = 1; } else { f[i][j] = f[i - 1][j] + f[i][j - 1]; } } } return f[m - 1][n - 1]; }