• HDU 1024:Max Sum Plus Plus 经典动态规划之最大M子段和


    Max Sum Plus Plus

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 21336    Accepted Submission(s): 7130


    Problem Description
    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

    Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

    Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

    But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
     

    Input
    Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
    Process to the end of file.
     

    Output
    Output the maximal summation described above in one line.
     

    Sample Input
    1 3 1 2 3 2 6 -1 4 -2 3 -2 3
     

    Sample Output
    6 8
    Hint
    Huge input, scanf and dynamic programming is recommended.

    具体解释见代码:
    #include <iostream>
    #include <algorithm>
    #include <cmath>
    #include <vector>
    #include <string>
    #include <cstring>
    #pragma warning(disable:4996)
    using namespace std;
    
    #define maxn 1000002
    #define minn -1*(1e9+7)
    
    int n, m;
    int dp[maxn], b[maxn], val[maxn];
    
    int main()
    {
    	//freopen("i.txt","r",stdin);
    	//freopen("o.txt","w",stdout);
    	
    	int i, j;
    	int res;
    	while (scanf("%d%d", &m, &n) != EOF)
    	{
    		for (i = 1; i <= n; i++)
    		{
    			scanf("%d", val + i);
    		}
    		memset(dp, 0, sizeof(dp));
    		memset(b, 0, sizeof(b));
    		
    		//dp[i][j]表示i个数分为j组且在选取了第i个数的前提下的最大值
    		//dp[i][j]=max(dp[i-1][j]+a[j],max(dp[0][j-1]~dp[i-1][j-1])+a[j])
    		//dp[x]表示第i轮的dp[x][i],即表示x个数时分成i个组的最大值
    		//b[x]表示上一轮所有的最大值,即第j轮时,b[x]=max(dp[0][j-1]~dp[x-1][j-1])
    		for (j = 1; j <= m; j++)
    		{
    			res = minn;
    			for (i = j; i <= n; i++)
    			{
    				//表示dp[j][i]只有两种可能来源,一个是dp[j-1][i]+val[j],一个是max(dp[0][j-1]~dp[i-1][j-1])+a[j]
    				dp[i] = max(dp[i - 1] + val[i], b[i - 1] + val[i]);
    				b[i - 1] = res;
    				res = max(res, dp[i]);
    			}
    		}
    		printf("%d
    ", res);
    	}
    	//system("pause");
    	return 0;
    }
    



    版权声明:本文为博主原创文章,未经博主允许不得转载。

  • 相关阅读:
    selenium 浏览器操作
    selenium 4.0新特性及新旧api对比
    Selenium123介绍
    selenium元素定位(三) css定位方法
    selenium 安装和启动
    Selenium元素定位(一)30+1+5种方式
    软件开发经验收集
    spring+hibernate架构中Dao访问数据库的几种方法
    某励志书4
    PHP的Foreach
  • 原文地址:https://www.cnblogs.com/lightspeedsmallson/p/4928123.html
Copyright © 2020-2023  润新知