• replace background of people picture with peddlehub model


    背景

    https://aistudio.baidu.com/aistudio/projectdetail/377462

    对于此案例实现的视频换背景功能感兴趣,所以细细研究其实现原理。

    本示例用DeepLabv3+模型完成一键抠图。在最新作中,作者通过encoder-decoder进行多尺度信息的融合,同时保留了原来的空洞卷积和ASSP层, 其骨干网络使用了Xception模型,提高了语义分割的健壮性和运行速率,在 PASCAL VOC 2012 dataset取得新的state-of-art performance,该PaddleHub Module使用百度自建数据集进行训练,可用于人像分割,支持任意大小的图片输入。在完成一键抠图之后,通过图像合成,实现扣图比赛任务

    功能实现分析

    功能实现上分为以下步骤:

    1.  将视频分解为帧图片 -- 依赖CV2的VideoCapture接口
    2.  提取图片中人体图像部分 -- 依赖 DeepLabv3+模型
    3.  生成背景图片
    4.  将第二步骤中的人体图像混入第三步生成的背景图片,生成新的帧图片
    5.  将新的帧图片,合成视频 -- 依赖CV2的VideoWriter接口

    依赖安装

    https://cloud.tencent.com/developer/article/1630639

    python3 -m pip install paddlepaddle -i https://pypi.tuna.tsinghua.edu.cn/simple

    pip install -i https://mirror.baidu.com/pypi/simple paddlehub

    遇到的坑于解

    在运行示例代码时,如果没有单独安装模型deeplabv3p_xception65_humanseg,默认会自动在执行前进行安装。但安装完成后,执行结果并没有生成扣图结果及humanseg_output目录,输出结果类似如下所示:

    正常情况下,在生成扣图数据,打印results时,应该是类似如下结构才对:

    可以通过单独安装模型并指定安装版本来解决。

    hub install deeplabv3p_xception65_humanseg==1.0.0

    具体原因没有细究,默认自动安装模型时,版本为1.2.0,猜测由于还是模型版本不兼容问题导致。

    Code (优化后)

    https://github.com/fanqingsong/replace_video_background/blob/master/app.py

    import cv2
    import os
    import numpy as np
    from PIL import Image
    import paddlehub as hub
    
    
    def split_video_to_frames(video_file_path, frames_folder_path):
        print("call split_video_to_frames")
    
        if not os.path.exists(video_file_path):
            print(f"video file {video_file_path} do not exist.")
            return
    
        cap = cv2.VideoCapture(video_file_path)
        index = 0
        while True:
            ret, frame = cap.read()
            print(f"capture ret={ret} frame={frame}")
            if ret:
                cv2.imwrite(f'{frames_folder_path}/{index}.jpg', frame)
                print(type(frame))
                print(frame.shape)
                index += 1
            else:
                break
    
        cap.release()
        print('video split finish, all %d frame' % index)
    
    
    def turn_frames_to_humans(frames_folder_path, humans_folder_path):
        print("call turn_frames_to_humans")
    
        print(f"frames_folder_path = {frames_folder_path}")
        print(f"humans_folder_path = {humans_folder_path}")
    
        print(os.listdir(frames_folder_path))
    
        # load model
        module = hub.Module(name="deeplabv3p_xception65_humanseg")
    
        test_img_path = [os.path.join(frames_folder_path, fname) for fname in os.listdir(frames_folder_path)]
        input_dict = {"image": test_img_path}
    
        results = module.segmentation(data=input_dict, output_dir=humans_folder_path)
        for result in results:
            print(result)
    
    
    def blend_one_human_with_background(one_human_image_path, background_image_path, one_blended_image_path):
        print("call blend_one_human_with_background")
    
        background_image = Image.open(background_image_path).convert('RGB')
    
        one_human_image = Image.open(one_human_image_path).resize(background_image.size)
    
        # PNG format = RGBA
        one_human_image = np.array(one_human_image)
        print(one_human_image.shape)
        print(one_human_image[0, 0])
    
        # transparency dimension of A in RGBA
        one_human_image_A = one_human_image[:, :, -1]
        # print(one_human_image_A.shape)
        # print(one_human_image_A[0, 0])
        # print(list(set(one_human_image_A.ravel())))
    
        # RGB dimension in RGBA
        one_human_image_RGB = one_human_image[:, :, :3]
    
        scope_map = one_human_image_A / 255
        # print(f"scope_map.shape={scope_map.shape}")
        # print(scope_map[0, 0])
        # print(list(set(scope_map.ravel())))
    
        scope_map = scope_map[:, :, np.newaxis]
        # print(f"scope_map.shape={scope_map.shape}")
        # print(scope_map[0, 0])
    
        scope_map = np.repeat(scope_map, repeats=3, axis=2)
        # print(f"scope_map.shape={scope_map.shape}")
        # print(scope_map[0, 0])
    
        human_layer = np.multiply(scope_map, one_human_image_RGB)
        backgroud_layer = np.multiply((1 - scope_map), np.array(background_image))
        blended_image = human_layer + backgroud_layer
        
        blended_image = Image.fromarray(np.uint8(blended_image))
        blended_image.save(one_blended_image_path)
    
    
    def blend_humans_with_background(humans_folder_path, background_image_path, frames_blended_folder_path):
        print("call blend_humans_with_background")
    
        all_human_image_paths = [filename for filename in os.listdir(humans_folder_path)]
    
        for i, one_human_image_name in enumerate(all_human_image_paths):
            one_human_image_path = f"{humans_folder_path}{one_human_image_name}"
            print(f"one_human_image_path = {one_human_image_path}")
    
            if not os.path.exists(one_human_image_path):
                print(f"one human image({one_human_image_path}) does not exist.")
                continue
    
            one_blended_image_path = f"{frames_blended_folder_path}{i}.png"
            print(one_blended_image_path)
    
            blend_one_human_with_background(one_human_image_path, background_image_path, one_blended_image_path)
       
    
    def init_canvas(width, height, color=(255, 255, 255)):
        print("call init_canvas")
    
        canvas = np.ones((height, width, 3), dtype="uint8")
        # assign all element with specific color
        canvas[:] = color
        return canvas
    
    
    def make_background_file(width, height, out_path):
        canvas = init_canvas(width, height, color=(0, 255, 0))
        cv2.imwrite(out_path, canvas)
    
    
    def concatenate_frames_blended(frames_blended_folder_path, video_blended_file_path, size):
        print("call concatenate_frames_blended")
    
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(video_blended_file_path, fourcc, 3.0, size)
        files = os.listdir(frames_blended_folder_path)
    
        for i in range(len(files)):
            one_frame_blended = frames_blended_folder_path + '%d.png' % i
            if not os.path.exists(one_frame_blended):
                continue
    
            img = cv2.imread(one_frame_blended)
            out.write(img)
        out.release()
    
    
    # Config
    video_path = 'workspace/sample.mp4'
    video_blended_path = 'workspace/output.mp4'
    background_image_path = 'workspace/green.jpg'
    
    frames_folder_path = 'workspace/frames/'
    humans_folder_path = 'workspace/humans/'
    frames_blended_folder_path = 'workspace/frames_blended/'
    
    background_size = (1920, 1080)
    
    if __name__ == "__main__":
        print("video to frames")
        if not os.path.exists(frames_folder_path):
            os.mkdir(frames_folder_path)
            split_video_to_frames(video_path, frames_folder_path)
    
        print("frames to humans")
        if not os.path.exists(humans_folder_path):
            os.mkdir(humans_folder_path)
            turn_frames_to_humans(frames_folder_path, humans_folder_path)
    
        print("make green background")
        if not os.path.exists(background_image_path):
            make_background_file(*background_size, background_image_path)
    
        print("blend humans with background")
        if not os.path.exists(frames_blended_folder_path):
            os.mkdir(frames_blended_folder_path)
            blend_humans_with_background(humans_folder_path, background_image_path, frames_blended_folder_path)
    
        print("concatenate frames blended into video")
        if not os.path.exists(video_blended_path):
            concatenate_frames_blended(frames_blended_folder_path, video_blended_path, background_size)

    PNG

    PNG支持 RGB 或者 RGBA格式。

    其中分为两部分

    • RGB -- 色彩通道
    • A -- 透明度通道

    本例中, 从帧图片中扣取人体图像, 保存的结果,就是PNG格式, 其支持RGBA格式。

    除了人体部分的图像,图片中其它部分均使用非透明的值0来表示, 其相当于一个mask,或者滤镜,只显示图片中指定部分。

    https://en.wikipedia.org/wiki/Portable_Network_Graphics#Transparency_of_image

    Portable Network Graphics (PNG, officially pronounced /pɪŋ/[2][3] PING, more commonly pronounced /ˌpɛnˈiː/[4] PEE-en-JEE) is a raster-graphics file format that supports lossless data compression. PNG was developed as an improved, non-patented replacement for Graphics Interchange Format (GIF).

    PNG supports palette-based images (with palettes of 24-bit RGB or 32-bit RGBA colors), grayscale images (with or without alpha channel for transparency), and full-color non-palette-based RGB or RGBA images. The PNG working group designed the format for transferring images on the Internet, not for professional-quality print graphics; therefore non-RGB color spaces such as CMYK are not supported. A PNG file contains a single image in an extensible structure of chunks, encoding the basic pixels and other information such as textual comments and integrity checks documented in RFC 2083.[5]

    相关代码

        # PNG format = RGBA
        one_human_image = np.array(one_human_image)
        print(one_human_image.shape)
        print(one_human_image[0, 0])
    
        # transparency dimension of A in RGBA
        one_human_image_A = one_human_image[:, :, -1]
        # print(one_human_image_A.shape)
        # print(one_human_image_A[0, 0])
        # print(list(set(one_human_image_A.ravel())))
    
        # RGB dimension in RGBA
        one_human_image_RGB = one_human_image[:, :, :3]

    numpy.repeat

    https://numpy.org/doc/stable/reference/generated/numpy.repeat.html

    对透明度像素元素,进行扩展, 透明度是一维的, 需要扩展成为三维, 扩展后的值,通过 np.multiply 对背景 和 前景进行过滤。

    Repeat elements of an array.

    np.repeat(3, 4)
    array([3, 3, 3, 3])
    
    x = np.array([[1,2],[3,4]])
    
    np.repeat(x, 2)
    array([1, 1, 2, 2, 3, 3, 4, 4])
    
    np.repeat(x, 3, axis=1)
    array([[1, 1, 1, 2, 2, 2],
           [3, 3, 3, 4, 4, 4]])
    
    np.repeat(x, [1, 2], axis=0)
    array([[1, 2],
           [3, 4],
           [3, 4]])

    相关部分代码


    background_image = Image.open(background_image_path).convert('RGB')

    one_human_image = Image.open(one_human_image_path).resize(background_image.size)

    # PNG format = RGBA
    one_human_image = np.array(one_human_image)
    print(one_human_image.shape)
    print(one_human_image[0, 0])

    # transparency dimension of A in RGBA
    one_human_image_A = one_human_image[:, :, -1]
    # print(one_human_image_A.shape)
    # print(one_human_image_A[0, 0])
    # print(list(set(one_human_image_A.ravel())))

    # RGB dimension in RGBA
    one_human_image_RGB = one_human_image[:, :, :3]

    scope_map = one_human_image_A / 255
    # print(f"scope_map.shape={scope_map.shape}")
    # print(scope_map[0, 0])
    # print(list(set(scope_map.ravel())))

    scope_map = scope_map[:, :, np.newaxis]
    # print(f"scope_map.shape={scope_map.shape}")
    # print(scope_map[0, 0])

    scope_map = np.repeat(scope_map, repeats=3, axis=2)
    # print(f"scope_map.shape={scope_map.shape}")
    # print(scope_map[0, 0])

    human_layer = np.multiply(scope_map, one_human_image_RGB)
    backgroud_layer = np.multiply((1 - scope_map), np.array(background_image))
    blended_image = human_layer + backgroud_layer

    Image对象如何转换为np?

    使用Image.open打开的图片文件,返回值对应一个Image对象,为Pillow定义。

    其为何能够转换为 numpy数据呢?

    即将Image对象放入 np.array() 函数中,就返回的numpy数据。

        background_image = Image.open(background_image_path).convert('RGB')
    
        one_human_image = Image.open(one_human_image_path).resize(background_image.size)
    
        # PNG format = RGBA
        one_human_image = np.array(one_human_image)
        print(one_human_image.shape)
        print(one_human_image[0, 0])

    https://numpy.org/doc/stable/reference/arrays.interface.html

    因为其实现了 numpy数据的内部接口

    This approach to the interface consists of the object having an __array_interface__ attribute.

    object.__array_interface__

    A dictionary of items (3 required and 5 optional). The optional keys in the dictionary have implied defaults if they are not provided.

    其它相同技术方案例子

    证件照换底色

    https://aistudio.baidu.com/aistudio/projectdetail/811555?channelType=0&channel=0

    出处:http://www.cnblogs.com/lightsong/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。
  • 相关阅读:
    oracle如何在所有procedure里搜索某些关键字, 存储过程
    Delphi 中文件的操作FileOpen
    【oracle】varchar和varchar2区别
    Delphi 2010 新增功能之: IOUtils 单元(6): TPath(结构体) 的方法与属性
    oracle如何在所有procedure里搜索某些关键字, 存储过程
    Delphi ADOConnection连接 sqlserver
    一种在SQLServer中实现Sequence的高效方法
    SQL Server 序列(SEQUENCE)使用
    [惠普HP] HP1215出现硒鼓底灰刮板拆机图解教程
    记录一下 山客 BK650 UPS 的配置软件下载地址
  • 原文地址:https://www.cnblogs.com/lightsong/p/14538003.html
Copyright © 2020-2023  润新知