• airflow


    Apache Airflow

    https://airflow.apache.org/

    Airflow is a platform created by the community to programmatically author, schedule and monitor workflows.
    Scalable

    Airflow has a modular architecture and uses a message queue to orchestrate an arbitrary number of workers. Airflow is ready to scale to infinity.

     
    Dynamic

    Airflow pipelines are defined in Python, allowing for dynamic pipeline generation. This allows for writing code that instantiates pipelines dynamically.

     
    Extensible

    Easily define your own operators and extend libraries to fit the level of abstraction that suits your environment.

     
    Elegant

    Airflow pipelines are lean and explicit. Parametrization is built into its core using the powerful Jinja templating engine.

    https://github.com/apache/airflow/

    Apache Airflow (or simply Airflow) is a platform to programmatically author, schedule, and monitor workflows.

    When workflows are defined as code, they become more maintainable, versionable, testable, and collaborative.

    Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command line utilities make performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress, and troubleshoot issues when needed.

    架构

    https://zhuanlan.zhihu.com/p/84332879

    Airflow 的架构

    在一个可扩展的生产环境中,Airflow 含有以下组件:

    • 元数据库:这个数据库存储有关任务状态的信息。
    • 调度器:Scheduler 是一种使用 DAG 定义结合元数据中的任务状态来决定哪些任务需要被执行以及任务执行优先级的过程。 调度器通常作为服务运行。
    • 执行器:Executor 是一个消息队列进程,它被绑定到调度器中,用于确定实际执行每个任务计划的工作进程。 有不同类型的执行器,每个执行器都使用一个指定工作进程的类来执行任务。 例如,LocalExecutor 使用与调度器进程在同一台机器上运行的并行进程执行任务。 其他像 CeleryExecutor 的执行器使用存在于独立的工作机器集群中的工作进程执行任务。
    • Workers:这些是实际执行任务逻辑的进程,由正在使用的执行器确定。

    airflow xcom 数据传递

    https://www.cnblogs.com/lshan/p/11721148.html

    https://github.com/apache/airflow/blob/master/airflow/example_dags/example_xcom.py

    from airflow import DAG
    from airflow.operators.python import PythonOperator
    from airflow.utils.dates import days_ago
    
    dag = DAG(
        'example_xcom',
        schedule_interval="@once",
        start_date=days_ago(2),
        default_args={'owner': 'airflow'},
        tags=['example']
    )
    
    value_1 = [1, 2, 3]
    value_2 = {'a': 'b'}
    
    
    def push(**kwargs):
        """Pushes an XCom without a specific target"""
        kwargs['ti'].xcom_push(key='value from pusher 1', value=value_1)
    
    
    def push_by_returning(**kwargs):
        """Pushes an XCom without a specific target, just by returning it"""
        return value_2
    
    
    def puller(**kwargs):
        """Pull all previously pushed XComs and check if the pushed values match the pulled values."""
        ti = kwargs['ti']
    
        # get value_1
        pulled_value_1 = ti.xcom_pull(key=None, task_ids='push')
        if pulled_value_1 != value_1:
            raise ValueError(f'The two values differ {pulled_value_1} and {value_1}')
    
        # get value_2
        pulled_value_2 = ti.xcom_pull(task_ids='push_by_returning')
        if pulled_value_2 != value_2:
            raise ValueError(f'The two values differ {pulled_value_2} and {value_2}')
    
        # get both value_1 and value_2
        pulled_value_1, pulled_value_2 = ti.xcom_pull(key=None, task_ids=['push', 'push_by_returning'])
        if pulled_value_1 != value_1:
            raise ValueError(f'The two values differ {pulled_value_1} and {value_1}')
        if pulled_value_2 != value_2:
            raise ValueError(f'The two values differ {pulled_value_2} and {value_2}')
    
    
    push1 = PythonOperator(
        task_id='push',
        dag=dag,
        python_callable=push,
    )
    
    push2 = PythonOperator(
        task_id='push_by_returning',
        dag=dag,
        python_callable=push_by_returning,
    )
    
    pull = PythonOperator(
        task_id='puller',
        dag=dag,
        python_callable=puller,
    )
    
    pull << [push1, push2]

    PythonOperator

    https://github.com/apache/airflow/blob/master/airflow/example_dags/example_python_operator.py

    import time
    from pprint import pprint
    
    from airflow import DAG
    from airflow.operators.python import PythonOperator, PythonVirtualenvOperator
    from airflow.utils.dates import days_ago
    
    args = {
        'owner': 'airflow',
    }
    
    dag = DAG(
        dag_id='example_python_operator',
        default_args=args,
        schedule_interval=None,
        start_date=days_ago(2),
        tags=['example']
    )
    
    
    # [START howto_operator_python]
    def print_context(ds, **kwargs):
        """Print the Airflow context and ds variable from the context."""
        pprint(kwargs)
        print(ds)
        return 'Whatever you return gets printed in the logs'
    
    
    run_this = PythonOperator(
        task_id='print_the_context',
        python_callable=print_context,
        dag=dag,
    )
    # [END howto_operator_python]
    
    
    # [START howto_operator_python_kwargs]
    def my_sleeping_function(random_base):
        """This is a function that will run within the DAG execution"""
        time.sleep(random_base)
    
    
    # Generate 5 sleeping tasks, sleeping from 0.0 to 0.4 seconds respectively
    for i in range(5):
        task = PythonOperator(
            task_id='sleep_for_' + str(i),
            python_callable=my_sleeping_function,
            op_kwargs={'random_base': float(i) / 10},
            dag=dag,
        )
    
        run_this >> task

    DEMO

    https://github.com/fanqingsong/machine_learning_workflow_on_airflow

    from csv import reader
    from sklearn.cluster import KMeans
    import joblib
    from airflow import DAG
    from airflow.operators.python_operator import PythonOperator
    import airflow.utils
    from datetime import datetime, timedelta
    
    
    default_args = {
        'owner': 'airflow',
        'start_date': airflow.utils.dates.days_ago(1),
        'email': ['qsfan@qq.com'],
        'email_on_failure': True,
        'email_on_retry': True,
        'retries': 3,
        'retry_delay': timedelta(seconds=5),
        'provide_context': True,
    }
    
    dag = DAG(
        dag_id='kmeans_with_workflow1',
        default_args=default_args,
        # schedule_interval="@once",
        # schedule_interval="00, *, *, *, *"  # support cron format
        # schedule_interval=timedelta(minutes=1)  # every minute
    )
    
    
    # Load a CSV file
    def load_csv(filename):
        file = open(filename, "rt")
        lines = reader(file)
        dataset = list(lines)
        return dataset
    
    
    # Convert string column to float
    def str_column_to_float(dataset, column):
        for row in dataset:
            row[column] = float(row[column].strip())
    
    
    # Convert string column to integer
    def str_column_to_int(dataset, column):
        class_values = [row[column] for row in dataset]
        unique = set(class_values)
        lookup = dict()
        for i, value in enumerate(unique):
            lookup[value] = i
        for row in dataset:
            row[column] = lookup[row[column]]
        return lookup
    
    
    def getRawIrisData(**context):
        # Load iris dataset
        filename = '/root/airflow/iris.csv'
        dataset = load_csv(filename)
        print('Loaded data file {0} with {1} rows and {2} columns'.format(filename, len(dataset), len(dataset[0])))
        print(dataset[0])
        # convert string columns to float
        for i in range(4):
            str_column_to_float(dataset, i)
        # convert class column to int
        lookup = str_column_to_int(dataset, 4)
        print(dataset[0])
        print(lookup)
    
        return dataset
    
    # task for data
    get_raw_iris_data = PythonOperator(
        task_id='get_raw_iris_data',
        python_callable=getRawIrisData,
        dag=dag,
        retries=2,
        provide_context=True,
    )
    
    
    def getTrainData(**context):
        dataset = context['task_instance'].xcom_pull(task_ids='get_raw_iris_data')
    
        trainData = [[one[0], one[1], one[2], one[3]] for one in dataset]
    
        print("Found {n_cereals} trainData".format(n_cereals=len(trainData)))
    
        return trainData
    
    # task for getting training data
    get_train_iris_data = PythonOperator(
        task_id='get_train_iris_data',
        python_callable=getTrainData,
        dag=dag,
        retries=2,
        provide_context=True,
    )
    
    
    
    def getNumClusters(**context):
        return 3
    
    
    # task for getting cluster number
    get_cluster_number = PythonOperator(
        task_id='get_cluster_number',
        python_callable=getNumClusters,
        dag=dag,
        retries=2,
        provide_context=True,
    )
    
    
    def train(**context):
        trainData = context['task_instance'].xcom_pull(task_ids='get_train_iris_data')
        numClusters = context['task_instance'].xcom_pull(task_ids='get_cluster_number')
    
        print("numClusters=%d" % numClusters)
    
        model = KMeans(n_clusters=numClusters)
    
        model.fit(trainData)
    
        # save model for prediction
        joblib.dump(model, 'model.kmeans')
    
        return trainData
    
    # task for training
    train_model = PythonOperator(
        task_id='train_model',
        python_callable=train,
        dag=dag,
        retries=2,
        provide_context=True,
    )
    
    
    
    def predict(**context):
        irisData = context['task_instance'].xcom_pull(task_ids='train_model')
    
        # test saved prediction
        model = joblib.load('model.kmeans')
    
        # cluster result
        labels = model.predict(irisData)
    
        print("cluster result")
        print(labels)
    
    
    # task for predicting
    predict_model = PythonOperator(
        task_id='predict_model',
        python_callable=predict,
        dag=dag,
        retries=2,
        provide_context=True,
    )
    
    
    def machine_learning_workflow_pipeline():
        get_raw_iris_data >> get_train_iris_data
    
        train_model << [get_cluster_number, get_train_iris_data]
    
        train_model >> predict_model
    
    
    machine_learning_workflow_pipeline()
    
    if __name__ == "__main__":
        dag.cli()
  • 相关阅读:
    利用runtime特性来动态调用方法
    点击屏幕获取对应tableviewcell
    IOS7导航栏与状态栏融合适配方法之一
    推送证书生成.p12
    OpenGL基础学习杂文
    android入门1.1
    java基础
    “Oracle.DataAccess.Client.OracleConnection”的类型初始值设定项引发异常。
    ArcEngine栅格和矢量渲染(含可视化颜色带)
    【转载】C#如何操控FTP,获取FTP文件或文件夹列表,获取FTP文件大小,FTP上传,FTP删除文件,FTP新建文件夹、删除文件夹
  • 原文地址:https://www.cnblogs.com/lightsong/p/13847152.html
Copyright © 2020-2023  润新知