• A1021. Deepest Root (25)


    A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.

    Output Specification:

    For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.

    Sample Input 1:

    5
    1 2
    1 3
    1 4
    2 5
    

    Sample Output 1:

    3
    4
    5
    

    Sample Input 2:

    5
    1 3
    1 4
    2 5
    3 4
    

    Sample Output 2:

    Error: 2 components
    
    #include <stdio.h>
    #include <stdlib.h>
    #include <iostream>
    #include <string.h>
    #include <math.h>
    #include <algorithm>
    #include <string>
    #include <stack> 
    #include <queue>
    #include <vector>
    using namespace std;
    const int maxn=100010;
    vector<int> G[maxn]; 
    int father[maxn];
    //并查集初始化
    void init()
    {
         for(int i=1;i<maxn;i++)
         {
             father[i]=i;
         }
    } 
    int findFather(int x)
    {
        int a=x;
        while(x!=father[x])
        {
            x=father[x];
        }
        //路径压缩
        while(a!=father[a])
        {
            int tmp=a;
            a=father[a];
            father[tmp]=x;    
        } 
        return x;
     } 
    void Union(int a,int b)//合并 
    {
        int faA=findFather(a);
        int faB=findFather(b);
        if(faA!=faB)
        {
            father[faA]=faB;
        }
    }
    //计算集合数目
    int isRoot[maxn];
    int cal(int n)
    {
        int block=0;
        for(int i=1;i<=n;i++)
        {
            isRoot[findFather(i)]=true;
        }
        for(int i=1;i<=n;i++)
        {
            block+=isRoot[i];
        }
        return block;
    } 
    //以某节点为根,遍历
    int maxH=0;
    vector<int> tmp,Ans; 
    void DFS(int u,int height,int pre)
    {
        if(height>maxH)
        {
        tmp.clear();
        tmp.push_back(u);
        maxH=height;    
        } else if(height==maxH)
        {
            tmp.push_back(u);
        }
        for(int i=0;i<G[u].size();i++)
        {
            if(G[u][i]==pre)continue;
            DFS(G[u][i],height+1,u);
        } 
    }
    int main(){
       int a,b,n;
       scanf("%d",&n);
       init(); 
       for(int i=1;i<n;i++)//从一开始 
       {
           scanf("%d%d",&a,&b);//无向图,节点用vector存储
        G[a].push_back(b);
        G[b].push_back(a);  
        Union(a,b); 
       }
       int block=cal(n);
       if(block!=1)
       {
           printf("Error: %d components",block);
       }else
       {
           DFS(1,1,-1);
           Ans=tmp;
           DFS(Ans[0],1,-1);
           for(int i=0;i<tmp.size();i++)
           {
              Ans.push_back(tmp[i]);    
        }
        sort(Ans.begin(),Ans.end());
        printf("%d
    ",Ans[0]);
        for(int i=1;i<Ans.size();i++)
        {
            if(Ans[i]!=Ans[i-1])
            {
                printf("%d
    ",Ans[i]);
            }
        }
       }
       
        return 0;
    }
  • 相关阅读:
    织梦网站底部的Power by DedeCms怎么去掉?
    在线文档预览
    Hyper-v网络配置
    office web apps部署(二)
    iOS 学习资料整理
    office web apps部署(一)
    cdr格式文件抠图
    iframe载入等待
    Vcl.FileCtrl.SelectDirectory
    Function Pointer in Delpni
  • 原文地址:https://www.cnblogs.com/ligen/p/4323685.html
Copyright © 2020-2023  润新知