#coding: utf-8
'''
用keras写的google Wide&&Deep model
'''
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense, merge
from sklearn.preprocessing import MinMaxScaler
#所有的数据列
COLUMNS = [
"age", "workclass", "fnlwgt", "education", "education_num", "marital_status",
"occupation", "relationship", "race", "gender", "capital_gain", "capital_loss",
"hours_per_week", "native_country", "income_bracket"
]
#标签列
LABEL_COLUMN = "label"
#类别型特征变量
CATEGORICAL_COLUMNS = [
"workclass", "education", "marital_status", "occupation", "relationship",
"race", "gender", "native_country"
]
#连续值特征变量
CONTINUOUS_COLUMNS = [
"age", "education_num", "capital_gain", "capital_loss", "hours_per_week"
]
#加载文件
def load(filename):
with open(filename, 'r') as f:
skiprows = 1 if 'test' in filename else 0
df = pd.read_csv(
f, names=COLUMNS, skipinitialspace=True, skiprows=skiprows, engine='python'
)
#缺省值处理
df = df.dropna(how='any', axis=0)
return df
#预处理
def preprocess(df):
df[LABEL_COLUMN] = df['income_bracket'].apply(lambda x: ">50K" in x).astype(int)
df.pop("income_bracket")
y = df[LABEL_COLUMN].values
df.pop(LABEL_COLUMN)
df = pd.get_dummies(df, columns=[x for x in CATEGORICAL_COLUMNS])
# TODO: 对特征进行选择,使得网络更高效
# TODO: 特征工程,比如加入交叉与组合特征
# from sklearn.preprocessing import PolynomialFeatures
# X = PolynomialFeatures(degree=2, interaction_only=True, include_bias=False).fit_transform(X)
df = pd.DataFrame(MinMaxScaler().fit_transform(df), columns=df.columns)
X = df.values
return X, y
def main():
df_train = load('adult.data')
df_test = load('adult.test')
df = pd.concat([df_train, df_test])#拼接
train_len = len(df_train)
X, y = preprocess(df)
X_train = X[:train_len]
y_train = y[:train_len]
X_test = X[train_len:]
y_test = y[train_len:]
#Wide部分
wide = Sequential()
wide.add(Dense(1, input_dim=X_train.shape[1]))
#Deep部分
deep = Sequential()
# TODO: 添加embedding层
deep.add(Dense(input_dim=X_train.shape[1], output_dim=100, activation='relu'))
#deep.add(Dense(100, activation='relu'))
deep.add(Dense(input_dim=100, output_dim=32, activation='relu'))
#deep.add(Dense(50, activation='relu'))
deep.add(Dense(input_dim=32, output_dim=8))
deep.add(Dense(1, activation='sigmoid'))
#Wide和Deep拼接 :两边搭出来,一拼接
model = Sequential()
model.add(merge([wide, deep], mode='concat', concat_axis=1))
model.add(Dense(1, activation='sigmoid'))
#编译模型
model.compile(
optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy']
)
#模型训练
model.fit([X_train, X_train], y_train, nb_epoch=10, batch_size=32)
#loss与准确率评估
loss, accuracy = model.evaluate([X_test, X_test], y_test)
print('
', 'test accuracy:', accuracy)
if __name__ == '__main__':
main()
#错误为:model.add(merge([wide, deep], mode='concat', concat_axis=1))
#TypeError: 'module' object is not callable