• poj 3304(直线与线段相交)


    传送门:Segments

    题意:线段在一个直线上的摄影相交 求求是否存在一条直线,使所有线段到这条直线的投影至少有一个交点 

    分析:可以在共同投影处作原直线的垂线,则该垂线与所有线段都相交<==> 是否存在一条直线与所有线段都相交。 去盗了一份bin神的模板,用起来太方便了。。。

    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    #include <queue>
    #include <map>
    #include <vector>
    #include <set>
    #include <string>
    #include <math.h>
    
    using namespace std;
    
    const double eps = 1e-8;
    const double PI = acos(-1.0);
    const int N = 110;
    int sgn(double x)
    {
        if(fabs(x) < eps)return 0;
        if(x < 0)return -1;
        else return 1;
    }
    struct Point
    {
        double x,y;
        Point(){}
        Point(double _x,double _y)
        {
            x = _x;y = _y;
        }
        Point operator -(const Point &b)const
        {
            return Point(x - b.x,y - b.y);
        }
        //叉积
        double operator ^(const Point &b)const
        {
            return x*b.y - y*b.x;
        }
        //点积
        double operator *(const Point &b)const
        {
            return x*b.x + y*b.y;
        }
        //绕原点旋转角度B(弧度值),后x,y的变化
        void transXY(double B)
        {
            double tx = x,ty = y;
            x = tx*cos(B) - ty*sin(B);
            y = tx*sin(B) + ty*cos(B);
        }
        //绕点p逆时针旋转角度B(弧度值)
        void rotate(Point p,double B)
        {
            Point v=(*this)-p;
            double tx = v.x,ty = v.y;
            x = tx*cos(B) - ty*sin(B);
            y = tx*sin(B) + ty*cos(B);
        }
    };
    struct Line
    {
        Point s,e;
        Line(){}
        Line(Point _s,Point _e)
        {
            s = _s;e = _e;
        }
        //两直线相交求交点
        //第一个值为0表示直线重合,为1表示平行,为0表示相交,为2是相交
        //只有第一个值为2时,交点才有意义
        pair<int,Point> operator &(const Line &b)const
        {
            Point res = s;
            if(sgn((s-e)^(b.s-b.e)) == 0)
            {
                if(sgn((s-b.e)^(b.s-b.e)) == 0)
                    return make_pair(0,res);//重合
                else return make_pair(1,res);//平行
            }
            double t = ((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e));
            res.x += (e.x-s.x)*t;
            res.y += (e.y-s.y)*t;
            return make_pair(2,res);
        }
    };
    //*两点间距离
    double dist(Point a,Point b)
    {
        return sqrt((a-b)*(a-b));
    }
    //*判断线段相交
    bool inter(Line l1,Line l2)
    {
        return
        max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
        max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
        max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
        max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
        sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e)) <= 0 &&
        sgn((l1.s-l2.e)^(l2.s-l2.e))*sgn((l1.e-l2.e)^(l2.s-l2.e)) <= 0;
    }
    //判断直线和线段相交
    bool Seg_inter_line(Line l1,Line l2) //判断直线l1和线段l2是否相交
    {
        return sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e)) <= 0;
    }
    //点到直线距离
    //返回为result,是点到直线最近的点
    Point PointToLine(Point P,Line L)
    {
        Point result;
        double t = ((P-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s));
        result.x = L.s.x + (L.e.x-L.s.x)*t;
        result.y = L.s.y + (L.e.y-L.s.y)*t;
        return result;
    }
    //点到线段的距离
    //返回点到线段最近的点
    Point NearestPointToLineSeg(Point P,Line L)
    {
        Point result;
        double t = ((P-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s));
        if(t >= 0 && t <= 1)
        {
            result.x = L.s.x + (L.e.x - L.s.x)*t;
            result.y = L.s.y + (L.e.y - L.s.y)*t;
        }
        else
        {
            if(dist(P,L.s) < dist(P,L.e))
                result = L.s;
            else result = L.e;
        }
        return result;
    }
    //计算多边形面积
    //点的编号从0~n-1
    double CalcArea(Point p[],int n)
    {
        double res = 0;
        for(int i = 0;i < n;i++)
            res += (p[i]^p[(i+1)%n])/2;
        return fabs(res);
    }
    //*判断点在线段上
    bool OnSeg(Point P,Line L)
    {
        return
        sgn((L.s-P)^(L.e-P)) == 0 &&
        sgn((P.x - L.s.x) * (P.x - L.e.x)) <= 0 &&
        sgn((P.y - L.s.y) * (P.y - L.e.y)) <= 0;
    }
    //*判断点在凸多边形内
    //点形成一个凸包,而且按逆时针排序(如果是顺时针把里面的<0改为>0)
    //点的编号:0~n-1
    //返回值:
    //-1:点在凸多边形外
    //0:点在凸多边形边界上
    //1:点在凸多边形内
    int inConvexPoly(Point a,Point p[],int n)
    {
        for(int i = 0;i < n;i++)
        {
            if(sgn((p[i]-a)^(p[(i+1)%n]-a)) < 0)return -1;
            else if(OnSeg(a,Line(p[i],p[(i+1)%n])))return 0;
        }
        return 1;
    }
    //*判断点在任意多边形内
    //射线法,poly[]的顶点数要大于等于3,点的编号0~n-1
    //返回值
    //-1:点在凸多边形外
    //0:点在凸多边形边界上
    //1:点在凸多边形内
    int inPoly(Point p,Point poly[],int n)
    {
        int cnt;
        Line ray,side;
        cnt = 0;
        ray.s = p;
        ray.e.y = p.y;
        ray.e.x = -100000000000.0;//-INF,注意取值防止越界
    
        for(int i = 0;i < n;i++)
        {
            side.s = poly[i];
            side.e = poly[(i+1)%n];
    
            if(OnSeg(p,side))return 0;
    
            //如果平行轴则不考虑
            if(sgn(side.s.y - side.e.y) == 0)
                continue;
    
            if(OnSeg(side.s,ray))
            {
                if(sgn(side.s.y - side.e.y) > 0)cnt++;
            }
            else if(OnSeg(side.e,ray))
            {
                if(sgn(side.e.y - side.s.y) > 0)cnt++;
            }
            else if(inter(ray,side))
                cnt++;
        }
        if(cnt % 2 == 1)return 1;
        else return -1;
    }
    //判断凸多边形
    //允许共线边
    //点可以是顺时针给出也可以是逆时针给出
    //点的编号1~n-1
    bool isconvex(Point poly[],int n)
    {
        bool s[3];
        memset(s,false,sizeof(s));
        for(int i = 0;i < n;i++)
        {
            s[sgn( (poly[(i+1)%n]-poly[i])^(poly[(i+2)%n]-poly[i]) )+1] = true;
            if(s[0] && s[2])return false;
        }
        return true;
    }
    Line seg[N];
    int n;
    bool judge(Point a,Point b)
    {
        if(sgn(dist(a,b))==0)return false;
        Line l=Line(a,b);
        for(int i=1;i<=n;i++)
            if(!Seg_inter_line(l,seg[i]))return false;
        return true;
    }
    int main()
    {
        int T;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d",&n);
            for(int i=1;i<=n;i++)
            {
                double a,b,c,d;
                scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
                seg[i]=Line(Point(a,b),Point(c,d));
            }
            bool flag=false;
            for(int i=1;i<=n&&!flag;i++)
            {
                for(int j=1;j<=n;j++)
                    if(judge(seg[i].s,seg[j].s)||judge(seg[i].s,seg[j].e)||
                       judge(seg[i].e,seg[j].s)||judge(seg[i].e,seg[j].e))
                    {
                        flag=true;break;
                    }
            }
            if(flag)puts("Yes!");
            else puts("No!");
        }
        return 0;
    }
    View Code
  • 相关阅读:
    机器学习:评价分类结果(Precision
    机器学习:评价分类结果(F1 Score)
    机器学习:评价分类结果(实现混淆矩阵、精准率、召回率)
    机器学习:评价分类结果(准确率的陷阱、混淆矩阵、精准率、召回率)
    TCP三次握手四次挥手
    LeetCode447. Number of Boomerangs
    Leetcode392. Is Subsequence
    LeetCode406. Queue Reconstruction by Height Add to List
    LeetCode455. Assign Cookies
    LeetCode 34. Search for a Range
  • 原文地址:https://www.cnblogs.com/lienus/p/4331388.html
Copyright © 2020-2023  润新知