题目链接:#6283. 数列分块入门 7
题目大意
给出一个长为 (n) 的数列,以及 (n) 个操作,操作涉及区间乘法,区间加法,单点询问。
solution
我们这题可以借鉴线段树的懒标记, 然后我们的操作就变成了:
修改操作: 加和: 对于整块直接加和,对于散块,我们懒标记下放,然后暴力加和
乘: 对于整块,我们更新懒标记,对于散块, 我们下放,然后暴力乘
查询操作: 我们直接求就好了
Code:
/**
* Author: Alieme
* Data: 2020.9.8
* Problem: LiberOJ #6283
* Time: O()
*/
#include <cstdio>
#include <iostream>
#include <string>
#include <cstring>
#include <cmath>
#include <algorithm>
#define int long long
#define rr register
#define inf 1e9
#define MAXN 100010
using namespace std;
inline int read() {
int s = 0, f = 0;
char ch = getchar();
while (!isdigit(ch)) f |= ch == '-', ch = getchar();
while (isdigit(ch)) s = s * 10 + (ch ^ 48), ch = getchar();
return f ? -s : s;
}
const int mod = 10007;
void print(int x) {
if (x < 0) putchar('-'), x = -x;
if (x > 9) print(x / 10);
putchar(x % 10 + 48);
}
int n, len;
int sum[MAXN], a[MAXN], id[MAXN], mul[MAXN];
inline void pushdown(int x) {
if (mul[x] ^ 1)
for (rr int i = (x - 1) * len + 1; i <= min(x * len, n); i++)
a[i] = (a[i] * mul[x]) % mod;
mul[x] = 1;
if (sum[x])
for (rr int i = (x - 1) * len + 1; i <= min(x * len, n); i++)
a[i] = (a[i] + sum[x]) % mod;
sum[x] = 0;
}
inline void add_sum(int l, int r, int x) {
int start = id[l], end = id[r];
if (id[l] == id[r]) {
pushdown(start);
for (rr int i = l; i <= r; i++) a[i] = (a[i] + x) % mod;
return ;
}
pushdown(start), pushdown(end);
for (rr int i = l; id[i] == start; i++) a[i] = (a[i] + x) % mod;
for (rr int i = start + 1; i < end; i++) sum[i] = (sum[i] + x) % mod;
for (rr int i = r; id[i] == end; i--) a[i] = (a[i] + x) % mod;
}
inline void add_mul(int l, int r, int x) {
int start = id[l], end = id[r];
if (id[l] == id[r]) {
pushdown(start);
for (rr int i = l; i <= r; i++) a[i] = (a[i] * x) % mod;
return ;
}
pushdown(start), pushdown(end);
for (rr int i = l; id[i] == start; i++) a[i] = (a[i] * x) % mod;
for (rr int i = start + 1; i < end; i++) sum[i] = (sum[i] * x) % mod, mul[i] = (mul[i] * x) % mod;
for (rr int i = r; id[i] == end; i--) a[i] = (a[i] * x) % mod;
}
inline int query(int x) {
return (a[x] * mul[id[x]] % mod + sum[id[x]]) % mod;
}
signed main() {
n = read();
len = sqrt(n);
for (rr int i = 1; i <= n; i++) a[i] = read(), a[i] %= mod, id[i] = (i - 1) / len + 1, mul[id[i]] = 1;
for (rr int i = 1; i <= n; i++) {
int opt = read(), l = read(), r = read(), c = read();
if (opt == 0) add_sum(l, r, c);
if (opt == 1) add_mul(l, r, c);
if (opt == 2) cout << query(r) << "
";
}
}