• HDU 3507 Print Article(DP+斜率优化)


                  

                   Print Article

                        Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
                               Total Submission(s): 7960    Accepted Submission(s): 2465


    Problem Description
    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.
    Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
    A single number, meaning the mininum cost to print the article.
     
    Sample Input
    5 5 5 9 5 7 5
     
    Sample Output
    230
     
    Author
    Xnozero
     
    Source
     

    【思路】

           斜率优化。

           设f[i],则转移式为f[i]=min{f[j]+(C[i]-C[j])^2+M},1<=j<i

           进一步得:f[i]=min{ (f[j]+C[j]^2-2*C[i]*C[j])+(C[i]^2+M) }

           设y(j)=f[j]+C[j]^2,a[i]=-*C[i],x(j)=C(j),则f[i]=min{y(j)+2*a[i]*x(j)}+C[i]^2+M

           则要求min p=y+2ax , 单调队列维护下凸包。

    【代码】

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<iostream>
     4 using namespace std;
     5 
     6 const int N = 500000+10;
     7 
     8 struct point { int x,y;
     9 }q[N],now;
    10 int L,R,n,m,C[N],f[N];
    11 int cross(point a,point b,point c) {
    12     return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
    13 }
    14 void read(int& x) {
    15     char c=getchar(); while(!isdigit(c)) c=getchar();
    16     x=0; while(isdigit(c)) x=x*10+c-'0' , c=getchar();
    17 }
    18 int main() {
    19     while(scanf("%d%d",&n,&m)==2) {
    20         for(int i=1;i<=n;i++)
    21             read(C[i]) , C[i]+=C[i-1];
    22         L=R=0;
    23         for(int i=1;i<=n;i++) {
    24             while(L<R && q[L].y-2*C[i]*q[L].x>=q[L+1].y-2*C[i]*q[L+1].x) L++;
    25             now.x=C[i];                                    //计算xi 
    26             now.y=q[L].y-2*C[i]*q[L].x+2*C[i]*C[i]+m;    //计算yi=f[i]+b[i]^2 = min p+a[i]^2+b[i]^2+M 
    27             while(L<R && cross(q[R-1],q[R],now)<=0) R--;
    28             q[++R]=now;
    29         }
    30         printf("%d
    ",q[R].y-C[n]*C[n]);
    31     }
    32     return 0;
    33 }
  • 相关阅读:
    前端优化分析 之 javascript放在底部
    HTML、SHTML、XHTML、DHTML、XML有什么不同
    web项目开发流程及规范
    sql developer连接mysql数据库
    hibernate自动创建表报错,提示不存在
    04关键字和标识符
    03注释与API文档
    WEB应用中的路径问题及乱码问题
    01java开发环境配置
    Eclipse Java EE IDE for Web Developers 4.5.1 安装hibername tools 插件
  • 原文地址:https://www.cnblogs.com/lidaxin/p/5116577.html
Copyright © 2020-2023  润新知