• POJ 1068 Parencodings(模拟)


    Parencodings

    Time Limit: 1000MS

     

    Memory Limit: 10000K

    Total Submissions: 13696

     

    Accepted: 8145

    Description

    Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways: 
    q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence). 
    q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence). 

    Following is an example of the above encodings: 


            S              (((()()())))


            P-sequence         4 5 6666


            W-sequence         1 1 1456

     


    Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string. 

    Input

    The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.

    Output

    The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.

    Sample Input

    2

    6

    4 5 6 6 6 6

    9

    4 6 6 6 6 8 9 9 9

    Sample Output

    1 1 1 4 5 6

    1 1 2 4 5 1 1 3 9

    Source

    Tehran 2001

     解题报告:这道题的题意就是给我们P序列,让我们求S序列,P-sequence表示第i个‘)’之前有几个‘(’,而S-sequence是表示在第i个“)”和它相匹配的(号中有几对相匹配的“()”的个数,包括它本身;现根据P序列求出括号的排列顺序,再求出S序列即可,主要就是找规律!

    代码如下:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    const int N = 50;
    int pse[N], wse[N], fuhao[N];
    int visit[N];
    int main()
    {
    int t, n, i, j, k;
    scanf("%d", &t);
    while (t --)
    {
    memset(pse, 0, sizeof(pse));
    memset(wse, 0, sizeof(wse));
    memset(fuhao, 0, sizeof(fuhao));
    memset(visit, 0, sizeof(visit));
    scanf("%d", &n);
    for (i = 1; i <= n; ++i)
    {
    scanf("%d", &pse[i]);
    }
    int count;
    for (i = 1, count = 1; i <= n; ++i)
    {
    int num = pse[i] - pse[i -1];//两个相邻的有括号中间的左括号的个数
    while (num --)
    {
    fuhao[count ++] = 0;//符号为左括号时
    }
    fuhao[count ++] = 1;
    }
    k = 1;
    for (i = 1; i <= 2 * n; ++i)
    {
    if (fuhao[i])
    {
    count = 1;
    for (j = i - 1; j >= 1; -- j)
    {
    if (visit[j]==0 && !fuhao[j])//找到与之相匹配的(的位置
    {
    visit[j] = 1;
    break;
    }
    else if (visit[j] && !fuhao[j])//求中间的左括号(的个数
    {
    count ++;
    }
    }
    wse[k ++] = count;
    }
    }
    for (i = 1; i < k - 1; ++i)
    {
    printf("%d ", wse[i]);
    }
    printf("%d\n", wse[i]);
    }
    return 0;
    }



  • 相关阅读:
    每天一个linux命令(9):touch
    每天一个linux命令(8):rm
    每天一个linux命令(7):mv
    每天一个linux命令(6):cp
    每天一个linux命令(5):rmdir
    每天一个linux命令(4):mkdir
    区块链技术与应用——BTC挖矿难度
    区块链技术与应用——BTC网络工作原理
    区块链技术与应用——BTC系统实现
    区块链技术与应用——BTC的共识协议
  • 原文地址:https://www.cnblogs.com/lidaojian/p/2370340.html
Copyright © 2020-2023  润新知